廣西自然科學(xué)基金資助項目_第1頁
廣西自然科學(xué)基金資助項目_第2頁
廣西自然科學(xué)基金資助項目_第3頁
廣西自然科學(xué)基金資助項目_第4頁
廣西自然科學(xué)基金資助項目_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

ApplicationofTheFundamentalHomomorphismTheoremofGroupLIQian-qianLIUZhi-gangYANGLi-ying(DepartmentofMathematicsandComputerScience,GuangxiTeachersEducationUniversity,NanningGuangxi530001,P.R.China)Abstract:Thefundamentalhomomorphismtheoremisveryimportantconsequenceingrouptheory,byusingitwecanresolvemanyproblems.InthispaperweresearchesmainlyaboutthefundamentalhomomorphismtheoremappliedtodirectproductsofgroupsandgroupofinnerautomorphismsofagroupG.Keyword:TheFundamentalHomomorphismTheorem;DirectProducts;InnerAutomorphismsMR()SubjectClassification:16WChineseLibraryClassification:O153.3Documentcode:AIntherealmofabstractalgebra,groupisoneofthebasicandimportantconcept,haveextensiveapplicationinthemathitselfandmanysideofmodernsciencetechnique.ForexampleTheoriesphysics,Quantummechanics,Quantumchemistry,Crystallographyapplicationareclearcertifications.Sothat,afterwestudyabstractalgebracourse,godeepintoagroundoftheoriesofresearchtohavethenecessityverymuchmore.Inthecontentsofgroup,thefundamentalhomomorphismtheoremisveryimportanttheorem,wecanuseitprovemanyproblemsaboutgrouptheory,inthispapertoproveseveralconclusionsasfollowwiththefundamentalhomomorphismtheorem:Thesecontentsareallstandardifwenottothespecialprovisionandexplained.Definition1.Letbeasubgroupofagroupwithsymbol≤,wesayisthenormalsubgroupofifoneofthefollowingconditionshold.Tosimplifymatters,wewrite.(1)forany;(2)wheneverany;(3)foreveryandany.Definition2.Thekernelofagrouphomomorphismfromtoagroupwithidentityistheset.Thekernelofisdenotedby.Definition3.Letbeacollectionofgroups.Theexternaldirectproductof,廣西自然科學(xué)基金(0447038)資助項目writtenas,isthesetofallm-tuplesforwhichtheitscomponentisanelementof,andtheoperationiscomponentwise.Insymbols=,whereisdefinedtobeNoticethatitiseasilytoverifythattheexternaldirectproductofgroupsisitselfagroup.[4]Definition4.Letbeagroupandbeasubgroupof.Forany,thesetiscalledtheleftcosetofincontaining.AnalogouslyiscalledtherightcosetofHincontaining.Lemma1.[1](Thefundamentalhomomorphismtheorem)Letbeagrouphomomorphismfromto.Thenthe=isthenormalsubgroupof,and.Tosimplifymatters,wecallthetheoremastheFHT.Lemma2.[2]Letbeagrouphomomorphismfromto.Thenwehavethefollowingproperties:(1)Ifisasubgroupof,thenisasubgroupof;(2)Ifisanormalin,thenisanormalin;(3)Ifisasubgroupof,thenisasubgroupof;(4)Ifisanormalsubgroupof,thenisanormalsubgroupofLemma3.[3]Letbeahomomorphismfromagrouptoagroup,and,.Then.Lemma4.[4]LetHbeasubgroupofGandletbelongtoG,then:(1)ifandonlyif;(2)ifandonlyif.Byusingtheabovelemmaswecanobtainthefollowingmainlyresults.Theorem1.LetGandHbetwogroups.SupposeJGandKH,thenand.Proof.Firstwewillprove.Foranyandevery.Wehave:.Sinceand,wecanget,i.e..Thus.WemakeuseoftheFHTtoprovethatisisomorphicto.Thereforewemustlookforagrouphomomorphismfromontoanddeterminethekernelofit.Infactonecandefinecorrespondencedefinedby.Clearly,,theremustbetosatisfy.Thus,isonto.BecauseofJG,wehavefor,similarly,for.When,thereare.Forany,wehave====.Hence.Thereforeisgroupahomomorphismfromontoandistheidentityof.Forany,then,accordingtothepropertyofcoset,wecanget:ifandonlyifand,i.e.=.Nowletwelookatourproof:,isagrouphomomorphismfromontoandthekernelofis.AccordingtotheFHT,wecanget.Theorem2.Letisagrouphomomorphismfromonto.Ifand,thenwhere.Proof:AccordingtoLemma2.[2](2),weknow.Toestablish,wefirstlyneedtoconstructamappingandproveisagrouphomomorphismfromonto.Wegivethemappingdefinedbywhere=.For,sinceisasurjectionfromto,wemustbefoundsuchthat.Thusisonto.Forarbitrary,Thereforeisagrouphomomorphism.Wewillnowshow,infactweknowthatisidentityof,accordingtoLemma4,wecangetthatfor,then,say,sothat.Ontheotherhand,,,thatistosay,.Moreover,becauseof,therefore.Thatis.AccordingtotheFHT,wecanobtain. Theorem1andTheorem2applyExercise1andExercise2.Exercise1.isnormalsubgroupof,isanormalsubgroupof.Sothatforanyand,forafunction:wehaveisagroupisomorphism,sothatAssumeandaresetsofallthenonzerorealnumbersandpositiverealnumbersrespectively,itisreadilytoverifythattheyareindeedgroupwithordinarymultiplication.Exercise2.Letbegenerallineargroupof2×2matricesoverunderordinarymatrixmultiplication.Thenthemappingisagrouphomomorphismfromonto.Thegroupofmatriceswithdeterminant1overisanormalsubgroupof.Moreover.Definition5.Anautomorphismofgroupisjustagroupisomorphismfromtoitself.Thesetofallautomorphismsofgroupisdenotedby.Forany,iscalledaninnerautomorphismofandisthesetofallinnerautomorphismof.Theorem3:Letbeagroupandthemappingdefinedby.Then≤and.Proof.Itisclearlythat≤[5].Toshow,sufficeittoprovethatisanautomorphismofforany.1)(one-to-one)Forany,if=,thenbyusingcancellationlawofgroup.Thusisone-to-one.2)(onto)Forany,wetake,then,sothatisonto.3)(O.P.)Forany,wehave.Thereforeisisomorphismfromto.Accordingtothedefinitionofautomorphism.Weknowisanautomorphismof.Noticethatforany,wehaveand.Infactforany,itisclearly.Also,Thus.Since,say,wehaveknown.Wecanobtain,i.e..Hencetheproofof≤iscomplete.Itiseasytoseethatforevery,ifandonlyifwhereisthecenterof(shortfor).Letbethemappingdefinedby,wewillprovethatisagrouphomomorphismfromGontoI(G)andthatCisitskernel.Forevery,wecanreadilyfindthat,thatistosay,isonto.Forany,since,sothatisagrouphomomorphismfromonto.Noticethatforanyandevery,wehave,i.e.,,thatis.Weobtain,hence.Next,forany,wekno

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論