山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題含解析_第1頁
山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題含解析_第2頁
山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題含解析_第3頁
山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題含解析_第4頁
山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濟南天橋區(qū)四校聯(lián)考2024年數(shù)學八年級下冊期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中點,AD=DC=2,下面結(jié)論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正確的個數(shù)是()A.1 B.2 C.3 D.42.下表是兩名運動員10次比賽的成績,,分別表示甲、乙兩名運動員測試成績的方差,則有()8分9分10分甲(頻數(shù))424乙(頻數(shù))343A. B. C. D.無法確定3.下列等式正確的是()A.+=+ B.﹣=C.++= D.+﹣=4.要使分式意義,則字母x的取值范圍是()A.x≠0 B.x<0 C.x>2 D.x≠25.已知是方程的一個根,則()A. B. C. D.6.周長為4cm的正方形對角線的長是()A.42cm B.22cm7.完成以下任務(wù),適合用抽樣調(diào)查的是()A.調(diào)查你班同學的年齡情況B.為訂購校服,了解學生衣服的尺寸C.對北斗導航衛(wèi)星上的零部件進行檢查D.考察一批炮彈的殺傷半徑.8.如圖,已知四邊形是平行四邊形,下列結(jié)論不正確的是()A.當時,它是矩形 B.當時,它是菱形C.當時,它是菱形 D.當時,它是正方形9.直線:為常數(shù)的圖象如圖,化簡:A.3 B. C. D.510.下列圖形中,是軸對稱圖形,不是中心對稱圖形的是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。12.已知,則比較大小2_____3(填“<“或“>”)13.如果從初三(1)、(2)、(3)班中隨機抽取一個班與初三(4)班進行一場拔河比賽,那么恰好抽到初三(1)班的概率是_____.14.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當乙車到達A地的時候,甲車與A地的距離為_____千米.15.方程的兩個根是和,則的值為____.16.如圖,以Rt△ABC的斜邊BC為邊在三角形ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連結(jié)AO,如果AB=4,AO=6,則△ABC的面積為_____.17.如圖,正方形ABCD的邊長為10,點A的坐標為(-8,0),點B在y軸上.若反比例函數(shù)y=kx的圖像經(jīng)過點C,則k的值為18.如圖所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,則∠BDE的度數(shù)是_____.三、解答題(共66分)19.(10分)如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標;(2)求在平移過程中線段AB掃過的面積.20.(6分)為了解市民對“霧霾天氣的主要原因”的認識,某調(diào)查公司隨機抽查了該市部分市民,并對調(diào)查結(jié)果進行整理,繪制了如下尚不完整的統(tǒng)計圖表.組別觀點頻數(shù)(人數(shù))大氣氣壓低,空氣不流動100底面灰塵大,空氣濕度低汽車尾氣排放工廠造成的污染140其他80調(diào)查結(jié)果扇形統(tǒng)計圖請根據(jù)圖表中提供的信息解答下列問題:(1)填空:__________,__________.扇形統(tǒng)計圖中組所占的百分比為__________%.(2)若該市人口約有100萬人,請你估計其中持組“觀點”的市民人數(shù)約是__________萬人.(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人持組“觀點”的概率是__________.21.(6分)將矩形ABCD繞點A順時針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.(1)如圖,當點E在BD上時.求證:FD=CD;(2)當α為何值時,GC=GB?畫出圖形,并說明理由.22.(8分)如圖1,,是線段上的一個動點,分別以為邊,在的同側(cè)構(gòu)造菱形和菱形,三點在同一條直線上連結(jié),設(shè)射線與射線交于.(1)當在點的右側(cè)時,求證:四邊形是平形四邊形.(2)連結(jié),當四邊形恰為矩形時,求的長.(3)如圖2,設(shè),,記點與之間的距離為,直接寫出的所有值.23.(8分)如圖,在矩形ABCD中,點E、F在邊AD上,AF=DE,連接BF、CE.(1)求證:∠CBF=∠BCE;(2)若點G、M、N在線段BF、BC、CE上,且FG=MN=CN.求證:MG=NF;(3)在(2)的條件下,當∠MNC=2∠BMG時,四邊形FGMN是什么圖形,證明你的結(jié)論.24.(8分)已知:如圖,△OAB,點O為原點,點A、B的坐標分別是(2,1)、(﹣2,4).(1)若點A、B都在一次函數(shù)y=kx+b圖象上,求k,b的值;(2)求△OAB的邊AB上的中線的長.25.(10分)一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務(wù),請問:(1)乙隊單獨做需要多少天才能完成任務(wù)?(2)現(xiàn)將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x;y都是正整數(shù),且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?26.(10分)某縣為了了解2018年初中畢業(yè)生畢業(yè)后的去向,對部分九年級學生進行了抽樣調(diào)查,就九年級學生的四種去向(A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖①②)請問:(1)本次共調(diào)查了_名初中畢業(yè)生;(2)請計算出本次抽樣調(diào)查中,讀職業(yè)高中的人數(shù)和所占百分比,并將兩幅統(tǒng)計圖中不完整的部分補充完整;(3)若該縣2018年九年級畢業(yè)生共有人,請估計該縣今年九年級畢業(yè)生讀職業(yè)高中的學生人數(shù).

參考答案一、選擇題(每小題3分,共30分)1、D【解析】

根據(jù)條件AD∥BC,AE∥CD可以得出四邊形AECD是平行四邊形,由AD=CD可以得出四邊形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中點,就有BO=AO=CO=AC.就有△ABO為等邊三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,從而得出結(jié)論.【詳解】∵AD∥BC,AE∥CD,∴四邊形AECD是平行四邊形.∵AD=DC,∴四邊形AECD是菱形,∴AE=EC=CD=AD=2,∴∠2=∠1.∵∠1=∠2,∴∠1=∠2=∠1.∵∠ABC=90°,∴∠1+∠2+∠1=90°,∴∠1=∠2=∠1=10°,∴BE=AE,AC=2AB.本答案正確;∴BE=1,在Rt△ABE中,由勾股定理,得AB=.本答案正確;∵O是AC的中點,∠ABC=90°,∴BO=AO=CO=AC.∵∠1=∠2=∠1=10°,∴∠BAO=60°,∴△ABO為等邊三角形.∵∠1=∠2,∴AE⊥BO.本答案正確;∵S△ADC=S△AEC=,∵CE=2,BE=1,∴CE=2BE,∴S△ACE=,∴S△ACE=2S△ABE,∴S△ADC=2S△ABE.本答案正確.∴正確的個數(shù)有4個.故選D.【點睛】本題考查了平行四邊形的判定,菱形的判定及性質(zhì)的運用,直角三角形的性質(zhì)的性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,等邊三角形的性質(zhì)的運用.解答時證明出四邊形AECD是菱形是解答本題的關(guān)鍵2、A【解析】【分析】先求甲乙平均數(shù),再運用方差公式求方差.【詳解】因為,,,所以,=,=,所以,故選A【點睛】本題考核知識點:方差.解題關(guān)鍵點:熟記方差公式.3、D【解析】

根據(jù)三角形法則即可判斷.【詳解】∵,∴,故選D.【點睛】本題考查平面向量的三角形法則,解題的關(guān)鍵是熟練掌握三角形法則.4、D【解析】

本題主要考查分式有意義的條件:分母不能為1.【詳解】要使分式有意義,則x﹣2≠1,解得x≠2.故選:D.【點睛】本題考查的是分式有意義的條件:當分母不為1時,分式有意義.5、D【解析】

把n代入方程得到,再根據(jù)所求的代數(shù)式的特點即可求解.【詳解】把n代入方程得到,故∴3()-7=3-7=-4,故選D.【點睛】此題主要考查一元二次方程的解,解題的關(guān)鍵是熟知一元二次方程的解的定義.6、D【解析】

先根據(jù)正方形的性質(zhì)得到正方形的邊長為1cm,然后根據(jù)勾股定理得到正方形對角線的長.【詳解】解:∵正方形的周長為4cm,∴正方形的邊長為1cm,∴正方形的對角線的長為12+12故選:D.【點睛】本題考查了正方形的性質(zhì)和勾股定理,根據(jù)正方形的四條邊相等得出直角三角形的兩直角邊長是解決此題的關(guān)鍵.7、D【解析】

調(diào)查方式的選擇需要將普查的局限性和抽樣調(diào)查的必要性結(jié)合起來,具體問題具體分析,普查結(jié)果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應(yīng)選擇普查方式,當考查的對象很多或考查會給被調(diào)查對象帶來損傷破壞,以及考查經(jīng)費和時間都非常有限時,普查就受到限制,這時就應(yīng)選擇抽樣調(diào)查.【詳解】解:A、人數(shù)不多,容易調(diào)查,宜采用全面調(diào)查;B、為訂購校服,了解學生衣服的尺寸是要求精確度高的調(diào)查,適合全面調(diào)查;C、對北斗導航衛(wèi)星上的零部件進行檢查,因為調(diào)查的對象比較重要,應(yīng)采用全面調(diào)查;D、考察一批炮彈的殺傷半徑適合抽樣調(diào)查;故選D.【點睛】本題主要考查了全面調(diào)查和抽樣調(diào)查,解題時根據(jù)調(diào)查的對象的范圍的大小作出判斷,當范圍較小時常常采用全面調(diào)查.8、D【解析】

根據(jù)已知及各個四邊形的判定對各個選項進行分析從而得到最后答案.【詳解】A.正確,對角線相等的平行四邊形是矩形;B.正確,對角線垂直的平行四邊形是菱形;C.正確,有一組鄰邊相等的平行四邊形叫做菱形;D.不正確,有一個角是直角的平行四邊形叫做矩形。故選D【點睛】此題考查平行四邊形的性質(zhì),矩形的判定,正方形的判定,解題關(guān)鍵在于掌握判定法則9、C【解析】

先從一次函數(shù)的圖象判斷出的正負,然后再化簡原代數(shù)式.【詳解】由直線為常數(shù)的圖象可得:,所以,故選:C.【點睛】本題主要考查一次函數(shù)的圖象,關(guān)鍵是根據(jù)二次根式的性質(zhì)及其化簡,絕對值的化簡解答.10、B【解析】

根據(jù)軸對稱圖形的定義和中心對稱圖形的定義逐一判斷即可.【詳解】A選項是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;B選項是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;C選項是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;D選項是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選B.【點睛】此題考查的是軸對稱圖形和中心對稱圖形的識別,掌握軸對稱圖形的定義和中心對稱圖形的定義是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、36【解析】

連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.【詳解】連接AC,如圖所示:∵∠B=90°,∴△ABC為直角三角形,又∵AB=3,BC=4,∴根據(jù)勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD為直角三角形,∠ACD=90°,則S四邊形ABCD=S△ABC+S△ACD=AB?BC+AC?CD=×3×4+×5×12=36,故四邊形ABCD的面積是36【點睛】此題考查勾股定理的逆定理,勾股定理,解題關(guān)鍵在于作輔助線12、<【解析】

要使兩個分式的和為零,則必須兩個分式都為0,進而計算a,b的值,代入比較大小即可.【詳解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案為:<【點睛】本題主要考查根式為零時參數(shù)的計算,這是考試的重點知識,應(yīng)當熟練掌握.13、【解析】

由從九年級(1)、(2)、(3)班中隨機抽取一個班與九年級(4)班進行一場拔河比賽,有三種取法,其中抽到九年級(1)班的有一種,所以恰好抽到九年級(1)班的概率是:.故答案為14、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學問題,從而將這個數(shù)學問題變化為解答實際問題.15、【解析】

根據(jù)韋達定理求解即可.【詳解】∵方程的兩個根是和∴由韋達定理得故答案為:.【點睛】本題考查了一元二次方程根的問題,掌握韋達定理是解題的關(guān)鍵.16、32【解析】

在上截取,連接,根據(jù)、、、四點共圓,推出,證,推出,,得出等腰直角三角形,根據(jù)勾股定理求出,即可求出.由三角形面積公式即可求出Rt△ABC的面積.【詳解】解:在上截取,連接,四邊形是正方形,,,,、、、四點共圓,,在和中,,,,,,即是等腰直角三角形,由勾股定理得:,即.∴=4故答案為:32【點睛】本題主要考查對勾股定理,正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,利用旋轉(zhuǎn)模型構(gòu)造三角形全等和等腰直角三角形是解此題的關(guān)鍵.17、1【解析】

過點C作CE⊥y軸于E,根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=90°,再根據(jù)同角的余角相等求出∠OAB=∠CBE,然后利用“角角邊”證明ΔABO和ΔBCE全等,根據(jù)全等三角形對應(yīng)邊相等可得OA=BE=8,CE=OB=6,再求出OE,然后寫出點C的坐標,再把點C的坐標代入反比例函數(shù)解析式計算即可求出k的值.【詳解】解:如圖,過點C作CE⊥y軸于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵點A的坐標為(-8,0),∴OA=8,∵AB=10,∴OB=10在ΔABO和ΔBCE中,∠OAB=∠CBE∠AOB=∠BEC∴ΔABO?ΔBCE(AAS),∴OA=BE=8,CE=OB=6,∴OE=BE-OB=8-6=2,∴點C的坐標為(6,2),∵反比例函數(shù)y=kx(k≠0)∴k=xy=2×6=12,故答案為1.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,涉及到正方形的性質(zhì),全等三角形的判定與性質(zhì),反比例函數(shù)圖象上的點的坐標特征,作輔助線構(gòu)造出全等三角形并求出點C的坐標是解題的關(guān)鍵.18、18°【解析】

根據(jù)矩形的性質(zhì)及角度的關(guān)系即可求解.【詳解】∵,∠ADC=90°,∴∠EDC=36°,∵∴∠DCE=54°,∵CO=DO,∴∠ODC=∠DCE=54°,∴=∠ODC-∠EDC=18°【點睛】此題主要考查矩形的性質(zhì),解題的關(guān)鍵是熟知繼續(xù)對角線互相平分且相等.三、解答題(共66分)19、(1)圖見解析,;(2)25【解析】

(1)由題意直接根據(jù)圖形平移的性質(zhì)畫出△A′B′C′,并寫出各點坐標即可;(2)由題意可知AB掃過的部分是平行四邊形,根據(jù)平行四邊形的面積公式即可得出結(jié)論.【詳解】解:(1)平移后的△A′B′C′如圖所示,觀察圖象可知點A′、B′、C′的坐標分別為:.(2)由圖象以及平移的性質(zhì)可知線段AB掃過部分形狀為平行四邊形,且底為5,高為5,故線段AB掃過的面積為:.【點睛】本題考查的是作圖-平移變換,熟練掌握圖形平移不變性的性質(zhì)是解答此題的關(guān)鍵.20、5013016%280.26【解析】

(1)求得總?cè)藬?shù),然后根據(jù)百分比的定義即可求得;(2)利用總?cè)藬?shù)100萬,乘以所對應(yīng)的比例即可求解;(3)利用頻率的計算公式即可求解.【詳解】解:(1)總?cè)藬?shù)是:100÷20%=500(人),則m=500×10%=50(人),C組的頻數(shù)n=500﹣100﹣50﹣140﹣80=130(人),E組所占的百分比是:×100%=16%;故答案為:50,130,16%;(2)100×=28(萬人);所以持D組“觀點”的市民人數(shù)為28萬人;(3)隨機抽查一人,則此人持C組“觀點”的概率是.答:隨機抽查一人,則此人持C組“觀點”的概率是.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力,以及列舉法求概率.21、(1)見解析;(2)見解析.【解析】

(1)先運用SAS判定△AED≌△FDE,可得DF=AE,再根據(jù)AE=AB=CD,即可得出CD=DF;(2)當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論,依據(jù)∠DAG=60°,即可得到旋轉(zhuǎn)角α的度數(shù).【詳解】(1)由旋轉(zhuǎn)可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如圖,當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論:①當點G在AD右側(cè)時,取BC的中點H,連接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四邊形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等邊三角形,∴∠DAG=60°,∴旋轉(zhuǎn)角α=60°;②當點G在AD左側(cè)時,同理可得△ADG是等邊三角形,∴∠DAG=60°,∴旋轉(zhuǎn)角α=360°﹣60°=300°.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定(SAS)與性質(zhì)的運用,解題關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì)、全等三角形的判定(SAS)與性質(zhì)的運用.22、(1)見解析;(2)FG=;(3)d=14或.【解析】

(1)由菱形的性質(zhì)可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行線的性質(zhì)可得∠FPE=∠BDP,可得PF∥BD,即可得結(jié)論;(2)由矩形的性質(zhì)和菱形的性質(zhì)可得FG=PB=2EF=2AP,即可求FG的長;(3)分兩種情況討論,由勾股定理可求d的值;點G在DP的右側(cè),連接AC,過點C作CH⊥AB,交AB延長線于點H;若點G在DP的左側(cè),連接AC,過點C作CH⊥AB,交AB延長線于點H.【詳解】(1)∵四邊形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四邊形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四邊形四邊形FGBP是平形四邊形;(2)若四邊形DFPG恰為矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四邊形APEF是菱形,四邊形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴FG=PB=.(3)如圖,點G在DP的右側(cè),連接AC,過點C作CH⊥AB,交AB延長線于點H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC==14若點G在DP的左側(cè),連接AC,過點C作CH⊥AB,交AB延長線于點H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC=綜上所述:d=14或.【點睛】本題考查菱形的性質(zhì)、平行線的性質(zhì)、平行四邊形的判定及勾股定理,解題的關(guān)鍵是掌握菱形的性質(zhì)、平行線的性質(zhì)、平行四邊形的判定及勾股定理的計算.23、(1)見解析;(2)見解析;(3)四邊形FGMN是矩形,見解析【解析】

(1)由“SAS”可證△ABF≌△DCE,可得∠ABF=∠DCE,可得結(jié)論;(2)通過證明四邊形FGMN是平行四邊形,可得MG=NF;(3)過點N作NH⊥MC于點H,由等腰三角形的性質(zhì)可證∠BMG=∠MNH,可證∠GMN=90°,即可得四邊形FGMN是矩形.【詳解】證明:(1)∵四邊形ABCD是矩形∴AB=CD,∠A=∠D=90°,且AF=DE∴△ABF≌△DCE(SAS)∴∠ABF=∠DCE,且∠ABC=∠DCB=90°∴∠FBC=∠ECB(2)∵FG=MN=CN∴∠NMC=∠NCM∴∠NMC=∠FBC∴MN∥BF,且FG=MN∴四邊形FGMN是平行四邊形∴MG=NF(3)四邊形FGMN是矩形理由如下:如圖,過點N作NH⊥MC于點H,∵MN=NC,NH⊥MC∴∠MNH=∠CNH=∠MNC,NH⊥MC∴∠MNH+∠NMH=90°∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC∴∠BMG=∠MNH,∴∠BMG+∠NMH=90°∴∠GMN=90°∴四邊形FGMN是矩形【點睛】本題考查了矩形的性質(zhì)和判定,全等三角形的判定和性質(zhì),平行四邊形的判定,證明∠BMG=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論