![山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁](http://file4.renrendoc.com/view3/M02/1C/2F/wKhkFmYkT16AJtTVAAIxZFPZKFY445.jpg)
![山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁](http://file4.renrendoc.com/view3/M02/1C/2F/wKhkFmYkT16AJtTVAAIxZFPZKFY4452.jpg)
![山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁](http://file4.renrendoc.com/view3/M02/1C/2F/wKhkFmYkT16AJtTVAAIxZFPZKFY4453.jpg)
![山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁](http://file4.renrendoc.com/view3/M02/1C/2F/wKhkFmYkT16AJtTVAAIxZFPZKFY4454.jpg)
![山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁](http://file4.renrendoc.com/view3/M02/1C/2F/wKhkFmYkT16AJtTVAAIxZFPZKFY4455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省青島4中重點(diǎn)達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤2.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°3.已知點(diǎn)為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.4.的整數(shù)部分是()A.3 B.5 C.9 D.65.在實(shí)數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-46.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.47.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.8.如圖,平行四邊形ABCD中,E為BC邊上一點(diǎn),以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.9.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點(diǎn)C.=± D.與最接近的整數(shù)是310.一個(gè)圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,10塊相同的小長方形墻磚拼成一個(gè)大長方形,設(shè)小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.12.若am=2,an=3,則am+2n=______.13.若點(diǎn)A(3,﹣4)、B(﹣2,m)在同一個(gè)反比例函數(shù)的圖象上,則m的值為.14.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.15.已知一組數(shù)據(jù)-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據(jù)的中位數(shù)為______.16.a(chǎn)(a+b)﹣b(a+b)=_____.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,連接AC,做△ABC的外接圓⊙O,延長EC交⊙O于點(diǎn)D,連接BD、AD,BC與AD交于點(diǎn)F分,∠ABC=∠ADB。(1)求證:AE是⊙O的切線;(2)若AE=12,CD=10,求⊙O的半徑。18.(8分)如圖,已知點(diǎn)C是∠AOB的邊OB上的一點(diǎn),求作⊙P,使它經(jīng)過O、C兩點(diǎn),且圓心在∠AOB的平分線上.19.(8分)如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?(3)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.20.(8分)先化簡,再求值,,其中x=1.21.(8分)已知拋物線過點(diǎn),,求拋物線的解析式,并求出拋物線的頂點(diǎn)坐標(biāo).22.(10分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(diǎn)(A在B左),y軸交于點(diǎn)C(0,-3).(1)求拋物線的解析式;(2)若點(diǎn)D是線段BC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以B、C、E、P為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.23.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,作ED⊥EB交AB于點(diǎn)D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.24.如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(diǎn)(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時(shí),求AE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,∴abc<0,所以②錯(cuò)誤;∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),∴x=1時(shí),二次函數(shù)有最大值,∴方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,所以③正確;∵拋物線與x軸的一個(gè)交點(diǎn)為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個(gè)交點(diǎn)為(-2,0),所以④錯(cuò)誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(diǎn)(4,0)∴當(dāng)1<x<4時(shí),y2<y1,所以⑤正確.故選C.考點(diǎn):1.二次函數(shù)圖象與系數(shù)的關(guān)系;2.拋物線與x軸的交點(diǎn).2、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點(diǎn):眾數(shù);算術(shù)平均數(shù).3、A【解析】
解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點(diǎn)的運(yùn)動(dòng)時(shí)間成正比.段,逐漸減小,到達(dá)最小值時(shí)又逐漸增大,排除、選項(xiàng),段,逐漸減小直至為,排除選項(xiàng).故選.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實(shí)際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時(shí),要理清圖象的含義即會(huì)識(shí)圖.4、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.5、D【解析】
根據(jù)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負(fù)數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的大小的比較,注意兩個(gè)無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號(hào)外的移到根號(hào)內(nèi),只需比較被開方數(shù)的大?。?、B【解析】
由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據(jù)“相似三角形對應(yīng)邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì).靈活運(yùn)用相似的性質(zhì)可得出解答.7、D【解析】
根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.8、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點(diǎn)睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.9、D【解析】
根據(jù)二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項(xiàng)依次分析,即可解答.【詳解】選項(xiàng)A,+無法計(jì)算;選項(xiàng)B,在數(shù)軸上存在表示的點(diǎn);選項(xiàng)C,;選項(xiàng)D,與最接近的整數(shù)是=1.故選D.【點(diǎn)睛】本題考查了二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識(shí)點(diǎn),熟記這些知識(shí)點(diǎn)是解題的關(guān)鍵.10、C【解析】設(shè)母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,
∴R=4cm.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
根據(jù)圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個(gè)方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是看懂圖示,分別表示出長方形的長和寬.12、18【解析】
運(yùn)用冪的乘方和積的乘方的運(yùn)算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.【點(diǎn)睛】本題考查了冪的乘方和積的乘方,掌握運(yùn)算法則是解答本題的關(guān)鍵.13、1【解析】
設(shè)反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=3×(﹣4)=﹣2m,然后解關(guān)于m的方程即可.【詳解】解:設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.14、【解析】
根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,熟記30°、45°、60°角的三角函數(shù)值是解題的關(guān)鍵.15、【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).
詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,
∴x=3,
先對這組數(shù)據(jù)按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,
∴這組數(shù)的中位數(shù)是=1.
故答案為:1.點(diǎn)睛:本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).16、(a+b)(a﹣b).【解析】
先確定公因式為(a+b),然后提取公因式后整理即可.【詳解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【點(diǎn)睛】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.三、解答題(共8題,共72分)17、(1)證明見解析;(2).【解析】
(1)作輔助線,先根據(jù)垂徑定理得:OA⊥BC,再證明OA⊥AE,則AE是⊙O的切線;(2)連接OC,證明△ACE∽△DAE,得,計(jì)算CE的長,設(shè)⊙O的半徑為r,根據(jù)勾股定理得:r2=62+(r-2)2,解出可得結(jié)論.【詳解】(1)證明:連接OA,交BC于G,∵∠ABC=∠ADB.∠ABC=∠ADE,∴∠ADB=∠ADE,∴,∴OA⊥BC,∵四邊形ABCE是平行四邊形,∴AE∥BC,∴OA⊥AE,∴AE是⊙O的切線;(2)連接OC,∵AB=AC=CE,∴∠CAE=∠E,∵四邊形ABCE是平行四邊形,∴BC∥AE,∠ABC=∠E,∴∠ADC=∠ABC=∠E,∴△ACE∽△DAE,,∵AE=12,CD=10,∴AE2=DE?CE,144=(10+CE)CE,解得:CE=8或-18(舍),∴AC=CE=8,∴Rt△AGC中,AG==2,設(shè)⊙O的半徑為r,由勾股定理得:r2=62+(r-2)2,r=,則⊙O的半徑是.【點(diǎn)睛】此題考查了垂徑定理,圓周角定理,相似三角形的判定與性質(zhì),切線的判定與性質(zhì),熟練掌握各自的判定與性質(zhì)是解本題的關(guān)鍵.18、答案見解析【解析】
首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點(diǎn)就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點(diǎn)睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關(guān)鍵..19、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時(shí),四邊形DMQF是平行四邊形;(3)點(diǎn)Q的坐標(biāo)為(3,2)或(﹣1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.【解析】
分析:(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時(shí)m的值;②∠BQM=90°,此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,易得點(diǎn)Q坐標(biāo).詳解:(1)由拋物線過點(diǎn)A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),
將點(diǎn)C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點(diǎn)D坐標(biāo)為(0,-2),
設(shè)直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當(dāng)-m2+m+4=時(shí),四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時(shí),四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當(dāng)∠DOB=∠MBQ=90°時(shí),△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當(dāng)m=4時(shí),點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,
∴m=3,點(diǎn)Q的坐標(biāo)為(3,2);
②當(dāng)∠BQM=90°時(shí),此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,
此時(shí)m=-1,點(diǎn)Q的坐標(biāo)為(-1,0);
綜上,點(diǎn)Q的坐標(biāo)為(3,2)或(-1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.點(diǎn)睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運(yùn)用.【詳解】請?jiān)诖溯斎朐斀猓?0、1.【解析】
先根據(jù)分式的運(yùn)算法則進(jìn)行化簡,再代入求值.【詳解】解:原式=()×=×=;將x=1代入原式==1.【點(diǎn)睛】分式的化簡求值21、y=+2x;(-1,-1).【解析】試題分析:首先將兩點(diǎn)代入解析式列出關(guān)于b和c的二元一次方程組,然后求出b和c的值,然后將拋物線配方成頂點(diǎn)式,求出頂點(diǎn)坐標(biāo).試題解析:將點(diǎn)(0,0)和(1,3)代入解析式得:解得:∴拋物線的解析式為y=+2x∴y=+2x=-1∴頂點(diǎn)坐標(biāo)為(-1,-1).考點(diǎn):待定系數(shù)法求函數(shù)解析式.22、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】
(1)將的坐標(biāo)代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;
(2)根據(jù)的坐標(biāo),易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點(diǎn)作軸交于,則可得到當(dāng)面積有最大值時(shí),四邊形的面積最大值;(3)本題應(yīng)分情況討論:①過作軸的平行線,與拋物線的交點(diǎn)符合點(diǎn)的要求,此時(shí)的縱坐標(biāo)相同,代入拋物線的解析式中即可求出點(diǎn)坐標(biāo);②將平移,令點(diǎn)落在軸(即點(diǎn))、點(diǎn)落在拋物線(即點(diǎn))上;可根據(jù)平行四邊形的性質(zhì),得出點(diǎn)縱坐標(biāo)(縱坐標(biāo)的絕對值相等),代入拋物線的解析式中即可求得點(diǎn)坐標(biāo).【詳解】解:(1)把代入,可以求得∴(2)過點(diǎn)作軸分別交線段和軸于點(diǎn),在中,令,得設(shè)直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設(shè)當(dāng)時(shí),有最大值此時(shí)四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點(diǎn)C作CP1∥x軸交拋物線于點(diǎn)P1,過點(diǎn)P1作P1E1∥BC交x軸于點(diǎn)E1,此時(shí)四邊形BP1CE1為平行四邊形,
∵C(0,-3)
∴設(shè)P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直線BC交x軸于點(diǎn)E,交x軸上方的拋物線于點(diǎn)P,當(dāng)BC=PE時(shí),四邊形BCEP為平行四邊形,
∵C(0,-3)
∴設(shè)P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此時(shí)存在點(diǎn)P2(,3)和P3(,3),
綜上所述存在3個(gè)點(diǎn)符合題意,坐標(biāo)分別是P1(3,-3),P2(,3),P3(,3).【點(diǎn)睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識(shí),綜合性強(qiáng),難度較大.23、(1)證明見解析;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度航拍項(xiàng)目管理與咨詢合同
- 2025年度股權(quán)并購項(xiàng)目審計(jì)報(bào)告合同
- 2025年度國有房產(chǎn)出售合同(含綠色交通)
- 2025年度健康醫(yī)療合同責(zé)任擔(dān)保書(醫(yī)療器械)
- 個(gè)人出售注塑機(jī)給工廠合同:2024年度樣本3篇
- 2025年度國際貿(mào)易貨物裝卸合同范本
- 二零二五年度環(huán)保設(shè)施建設(shè)承包合同書范本3篇
- 2025年荒山土地承包經(jīng)營權(quán)互換合同示范文本
- 二零二四年度協(xié)議離婚手續(xù)辦理與債務(wù)清算服務(wù)合同3篇
- 二零二五年度智能交通管理系統(tǒng)采購合同3篇
- H3CNE認(rèn)證考試題庫官網(wǎng)2022版
- 感統(tǒng)訓(xùn)練培訓(xùn)手冊(適合3-13歲兒童)
- ??停?024年智能制造校園招聘白皮書
- 住院病人燙傷的應(yīng)急演練
- 新入職消防員考核試卷題庫(240道)
- 海員的營養(yǎng)-1315醫(yī)學(xué)營養(yǎng)霍建穎等講解
- 2023年廣東省招聘事業(yè)單位人員考試真題及答案
- 幼兒平衡車訓(xùn)練課程設(shè)計(jì)
- 創(chuàng)業(yè)計(jì)劃路演-美甲
- 梁山伯與祝英臺(tái)小提琴譜樂譜
- 我國全科醫(yī)生培訓(xùn)模式
評(píng)論
0/150
提交評(píng)論