2024屆山東省菏澤市第一中學高三一診考試數學試卷含解析_第1頁
2024屆山東省菏澤市第一中學高三一診考試數學試卷含解析_第2頁
2024屆山東省菏澤市第一中學高三一診考試數學試卷含解析_第3頁
2024屆山東省菏澤市第一中學高三一診考試數學試卷含解析_第4頁
2024屆山東省菏澤市第一中學高三一診考試數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省菏澤市第一中學高三一診考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,滿足約束條件,則的最大值為A. B. C. D.2.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.3.若點是角的終邊上一點,則()A. B. C. D.4.設,則()A. B. C. D.5.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.6.若直線l不平行于平面α,且l?α,則()A.α內所有直線與l異面B.α內只存在有限條直線與l共面C.α內存在唯一的直線與l平行D.α內存在無數條直線與l相交7.設集合(為實數集),,,則()A. B. C. D.8.若為純虛數,則z=()A. B.6i C. D.209.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.10.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.11.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.12.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.設,若關于的方程有實數解,則實數的取值范圍_____.15.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.16.點是曲線()圖象上的一個定點,過點的切線方程為,則實數k的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.18.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統(tǒng)計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?19.(12分)已知.(Ⅰ)當時,解不等式;(Ⅱ)若的最小值為1,求的最小值.20.(12分)已知函數,.(1)當時,討論函數的零點個數;(2)若在上單調遞增,且求c的最大值.21.(12分)已知函數(),且只有一個零點.(1)求實數a的值;(2)若,且,證明:.22.(10分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.2、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數乘運算,考查學生的運算能力,是一道中檔題.3、A【解析】

根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、D【解析】

結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.5、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.6、D【解析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關系,直線與直線的位置關系,難度不大.7、A【解析】

根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.8、C【解析】

根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.9、C【解析】

先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.10、B【解析】

計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.11、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.12、C【解析】

根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角14、【解析】

先求出,從而得函數在區(qū)間上為增函數;在區(qū)間為減函數.即可得的最大值為,令,得函數取得最小值,由有實數解,,進而得實數的取值范圍.【詳解】解:,當時,;當時,;函數在區(qū)間上為增函數;在區(qū)間為減函數.所以的最大值為,令,所以當時,函數取得最小值,又因為方程有實數解,那么,即,所以實數的取值范圍是:.故答案為:【點睛】本題考查了函數的單調性,函數的最值問題,導數的應用,屬于中檔題.15、【解析】

利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.【點睛】該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.16、1【解析】

求出導函數,由切線斜率為4即導數為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數的幾何意義,函數圖象某點處的切線的斜率就是該點處導數值.本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【詳解】(1)由題設得.由正弦定理得∵∴,所以或.當,(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應用正弦定理將邊化角,屬綜合性基礎題.18、(1)(2)應該購買21件易耗品【解析】

(1)由統(tǒng)計表中數據可得型號分別為在一個月使用易耗品的件數為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數總數為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數為6和7的頻率均為;B型號的設備一個月使用易耗品的件數為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數分別為,則,,,設該單位三臺設備一個月中使用易耗品的件數總數為X,則而,,故,即該單位一個月中三臺設備使用的易耗品總數超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設備的同時購買了20件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;;若該單位在肋買設備的同時購買了21件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;,所以該單位在購買設備時應該購買21件易耗品【點睛】本題考查獨立事件的概率,考查離散型隨機變量的分布列和期望,考查數據處理能力.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)當時,令,作出的圖像,結合圖像即可求解;(Ⅱ)結合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標為2,由對稱性知,點橫坐標為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯(lián)立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題20、(1)見解析(2)2【解析】

(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數可得,則,即,再設,利用導函數求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數的大致圖象,如圖所示.由圖可知,當時,直線和函數的圖象有兩個交點,即函數有兩個零點;當或,即或時,直線和函數的圖象有一個交點,即函數有一個零點;當即時,直線與函數的象沒有交點,即函數無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導函數研究函數的零點問題,考查利用導函數求最值,考查運算能力與分類討論思想.21、(1)(2)證明見解析【解析】

(1)求導可得在上,在上,所以函數在時,取最小值,由函數只有一個零點,觀察可知則有,即可求得結果.(2)由(1)可知為最小值,則構造函數(),求導借助基本不等式可判斷為減函數,即可得,即則有,由已知可得,由,可知,因為時,為增函數,即可得證得結論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數在時,取最小值,當最小值為0時,函數只有一個零點,易得,所以,解得.(2)由(1)得,函數,設(),則,設(),則,,所以為減函數,所以,即,所以,即,又,所以,又當時,為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論