版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Theuseofartificialintelligenceandmachinelearningbymarketintermediaries
andassetmanagers
FinalReport
TheBoard
OFTHE
InternationalOrganizationofSecuritiesCommissions
FR06/2021
September2021
PAGE\*roman
iii
Copiesofpublicationsareavailablefrom:
TheInternationalOrganizationofSecuritiesCommissionswebsite
?InternationalOrganizationofSecuritiesCommissions2021.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
Contents
Chapter
Page
1
Executivesummary
1
2
Backgroundandscope
4
3
HowfirmsareusingAIandMLtechniques
6
4
IdentifiedrisksandharmsposedbytheuseofAIandML
9
5
Firms’responsetothepotentialrisksarisingfromtheuseofAIandML
14
6
Guidance
17
A1
HowregulatorsareaddressingthechallengescreatedbyAIandML
22
A2
Guidancepublishedbysupranationalbodies
34
A3
FeedbackStatement
38
PAGE
27
Chapter1-ExecutiveSummary
Background
ArtificialIntelligence(AI)andMachineLearning(ML)areincreasinglyusedinfinancialservices,duetoacombinationofincreaseddataavailabilityandcomputingpower.TheuseofAIandMLbymarketintermediariesandassetmanagersmaybealteringfirms’businessmodels.Forexample,firmsmayuseAIandMLtosupporttheiradvisoryandsupportservices,riskmanagement,clientidentificationandmonitoring,selectionoftradingalgorithmsandportfoliomanagement,whichmayalsoaltertheirriskprofiles.
Theuseofthistechnologybymarketintermediariesandassetmanagersmaycreatesignificantefficienciesandbenefitsforfirmsandinvestors,includingincreasingexecutionspeedandreducingthecostofinvestmentservices.However,thisusemayalsocreateoramplifycertainrisks,whichcouldpotentiallyhaveanimpactontheefficiencyoffinancialmarketsandcouldresultinconsumerharm.Theuseof,andthecontrolssurrounding,AIandMLwithinfinancialmarketsis,therefore,acurrentfocusforregulatorsacrosstheglobe.
IOSCOidentifieditsworkontheuseofAIandMLbymarketintermediariesandassetmanagersasakeypriority.TheIOSCOBoardapprovedamandateinApril2019forCommittee3onRegulationofMarketIntermediaries(C3)andCommittee5onInvestmentManagement(C5)toexaminebestpracticesarisingfromthesupervisionofAIandML.
1
Thecommitteeswereaskedtoproposeguidancethatmemberjurisdictionsmayconsideradoptingtoaddresstheconductrisksassociatedwiththedevelopment,testinganddeploymentofAIandML.
PotentialrisksidentifiedintheConsultationReport
IOSCOsurveyedandheldroundtablediscussionswithmarketintermediariesandconductedoutreachtoassetmanagerstoidentifyhowAIandMLarebeingusedandtheassociatedrisks.ThefollowingareaswerehighlightedintheConsultationReportreleasedinJune2020
2
wherepotentialrisksandharmsmayariseinrelationtothedevelopment,testinganddeploymentofAIandML:
Governanceandoversight;
Algorithmdevelopment,testingandongoingmonitoring;
Dataqualityandbias;
Transparencyandexplainability;
Outsourcing;and
Ethicalconcerns.
1 BoardPriorities-IOSCOworkprogramfor2019,March25,2019,availableat:
/library/pubdocs/pdf/IOSCOPD625.pdf
2 Theuseofartificialintelligenceandmachinelearningbymarketintermediariesandassetmanagers,IOSCOBoardConsultationReport,June2020,availableat:
/library/pubdocs/pdf/IOSCOPD658.pdf
IOSCOGuidance
BasedontheresponsesreceivedtotheConsultationReport,thisfinalreportprovidesguidancetoassistIOSCOmembersinsupervisingmarketintermediariesandassetmanagersthatutiliseAIandML.
TheguidanceconsistsofsixmeasuresthatreflectexpectedstandardsofconductbymarketintermediariesandassetmanagersusingAIandML.Althoughtheguidanceisnotbinding,IOSCOmembersareencouragedtoconsiderthesemeasurescarefullyinthecontextoftheirlegalandregulatoryframeworks.IOSCOmembersandfirmsshouldalsoconsidertheproportionalityofanyresponsewhenimplementingthesemeasures.
TheuseofAIandMLwilllikelyincreaseasthetechnologyadvances,anditisplausiblethattheregulatoryframeworkwillneedtoevolveintandemtoaddresstheassociatedemergingrisks.Therefore,thisreport,includingthedefinitionsandguidance,maybereviewedinthefuturetoremainuptodate.
Measure1:Regulatorsshouldconsiderrequiringfirmstohavedesignatedseniormanagementresponsiblefortheoversightofthedevelopment,testing,deployment,monitoringandcontrolsofAIandML.Thisincludesadocumentedinternalgovernanceframework,withclearlinesofaccountability.SeniorManagementshoulddesignateanappropriatelyseniorindividual(orgroupsofindividuals),withtherelevantskillsetandknowledgetosignoffoninitialdeploymentandsubstantialupdatesofthetechnology.
Measure2:RegulatorsshouldrequirefirmstoadequatelytestandmonitorthealgorithmstovalidatetheresultsofanAIandMLtechniqueonacontinuousbasis.ThetestingshouldbeconductedinanenvironmentthatissegregatedfromtheliveenvironmentpriortodeploymenttoensurethatAIandML:
behaveasexpectedinstressedandunstressedmarketconditions;and
operateinawaythatcomplieswithregulatoryobligations.
Measure3:Regulatorsshouldrequirefirmstohavetheadequateskills,expertiseandexperiencetodevelop,test,deploy,monitorandoverseethecontrolsovertheAIandMLthatthefirmutilises.Complianceandriskmanagementfunctionsshouldbeabletounderstandandchallengethealgorithmsthatareproducedandconductduediligenceonanythird-partyprovider,includingonthelevelofknowledge,expertiseandexperiencepresent.
Measure4:Regulatorsshouldrequirefirmstounderstandtheirrelianceandmanagetheirrelationshipwiththird-partyproviders,includingmonitoringtheirperformanceandconductingoversight.Toensureadequateaccountability,firmsshouldhaveaclearservicelevelagreementandcontractinplaceclarifyingthescopeoftheoutsourcedfunctionsandtheresponsibilityoftheserviceprovider.Thisagreementshouldcontainclearperformanceindicatorsandshouldalsoclearlydeterminerightsandremediesforpoorperformance.
Measure5:RegulatorsshouldconsiderwhatlevelofdisclosureoftheuseofAIandMLisrequiredbyfirms,including:
RegulatorsshouldconsiderrequiringfirmstodisclosemeaningfulinformationtocustomersandclientsaroundtheiruseofAIandMLthatimpactclientoutcomes.
RegulatorsshouldconsiderwhattypeofinformationtheymayrequirefromfirmsusingAIandMLtoensuretheycanhaveappropriateoversightofthosefirms.
Measure6:RegulatorsshouldconsiderrequiringfirmstohaveappropriatecontrolsinplacetoensurethatthedatathattheperformanceoftheAIandMLisdependentonisofsufficientqualitytopreventbiasesandsufficientlybroadforawell-foundedapplicationofAIandML.
Chapter2-BackgroundandScope
PreviousIOSCOworkinthisarea
IOSCOhasundertakenseveralworkstreamsontheuseofAIandMLinfinancialmarkets,including:
CommitteeonEmergingRisks(CER):TheCERundertookamandateontheuseofnoveltechnologiesdeployedbyregulatorstoincreasetheefficiencyandeffectivenessofsupervisoryandoversightprogramsandpublishedareportinFebruary2017.
3
CERexaminedtheregulatoryuseoftoolssuchasbigdataanalyticsanddatavisualisationtechnologies;AIandML,anddeeplearningtechnologies;anddistributedledgertechnologies.
CommitteeonRegulationofSecondaryMarkets(C2):C2publishedareportinApril2013onTechnologicalChallengestoEffectiveMarketSurveillanceIssuesandRegulatoryTools.
4
Thereportmaderecommendationstohelpmarketauthoritiesaddressthetechnologicaldifficultiesfacingeffectivemarketsurveillance.
IOSCOFintechNetwork:TheIOSCOFintechNetworkwasestablishedinMay2018tofacilitatethesharingofknowledgeandexperiencesamongIOSCOmembers.TheIOSCOFintechNetworkconsideredtheethicalimplicationsoftheuseofAIandMLtechnologies.
IOSCOMandate
Buildingonitspreviouswork,IOSCOreleasedaConsultationReportontheuseofAIandMLbymarketintermediariesandassetmanagersinJune2020,proposingguidancetoaddressthepotentialrisksandharmsthatmaybecausedbytheuseofAIandMLbythesemarketintermediariesandassetmanagers.Theproposedguidancelookedtohelpensurethatmarketintermediariesandassetmanagershave:
appropriategovernance,controlsandoversightframeworksoverthedevelopment,testing,useandperformancemonitoringofAIandML;
staffwithadequateknowledge,skillsandexperiencetoimplement,oversee,andchallengetheoutcomesoftheAIandML;
robust,consistentandclearlydefineddevelopmentandtestingprocessestoenablefirmstoidentifypotentialissuespriortofulldeploymentofAIandML;and
appropriatetransparencyanddisclosurestotheirinvestors,regulatorsandotherrelevantstakeholders.
3 IOSCOResearchReportonFinancialTechnologies(Fintech),February2017,availableat:
/library/pubdocs/pdf/IOSCOPD554.pdf
4 TechnologicalChallengestoEffectiveMarketSurveillanceIssuesandRegulatoryTools,August2012,availableat:
/library/pubdocs/pdf/IOSCOPD389.pdf
ThisFinalReportconfirmstheguidanceproposedintheConsultationReport,amendingittotakeaccountofresponsesreceivedasappropriate.
DefiningthetermsAlandMLforthisreport
ArtificialIntelligence
ThetermArtificialIntelligence,firstcoinedbydatascientistJohnMcCarthy
5
in1956,isdefinedas“thescienceandengineeringofmakingintelligentmachines”,orsimply,thestudyofmethodsformakingcomputersmimichumandecisionstosolveproblems.AIincludestaskssuchaslearning,reasoning,planning,perception,languageunderstandingandrobotics.AIinthefinancialservicesindustryisstillinitsrelativeinfancyandispoisedtobecomemorecommon,andwiththatwillcomelegal,ethical,economicandregulatorychallenges.
MachineLearning
ThetermMachineLearningisasubsetandapplicationofAI,whichfocusesonthedevelopmentofcomputerprograms-designedtolearnfromexperiencewithoutbeingexplicitlyprogrammedtodoso.
TherearethreecategoriesofMLalgorithms–supervisedlearning,unsupervisedlearningandreinforcementlearning.Thesecategoriesareusedbasedonthetypeofdataavailableandthelevelofhumaninterventionrequiredinprovidingfeedback.DeepLearninginvolvestrainingneuralnetworks(computingsystems)withmanylayersofunits,inspiredbythestructureofthehumanbrainandcanalsoincludeanyofthesecategories:
6
Supervisedlearning:thealgorithmisfedaninitialsetofdatathathasbeenlabelled.Basedonthistrainingset,thealgorithmwilllearnclassificationrulesandpredictthelabelsfortheremainingobservationsinthedataset.
Reinforcementlearning:thealgorithmisfedaninitialsetofdatathathasnotbeenlabelledandisaskedtoidentifyclustersofobservationsunderpinnedbysimilarcharacteristics.Asitchoosesanactionforthedatapoints,itreceivesfeedbackthathelpsitlearn.
7
Unsupervisedlearning:thealgorithmdetectspatternsinthedatabyidentifyingclustersofobservationsunderpinnedbysimilarcharacteristics–ituncoversthestructureofthedataonitsown.
5 WhatisAI?availableat:
/artificial-intelligence/index.html
6Deeplearningisamethodthatanalysesdatainmultiplelayers,startingwithlearningaboutsimpleconceptsthenlearningmorecomplexconcepts.Deeplearningcanbeusedforallthreecategoriesofmachinelearningalgorithms.
Adaptedfrom‘WhatisMachineLearning?’at
/cloud/learn/machine-
learning.
Afamousexampleofthisisthe“move37”inthegameofGo:whenGoogle’sAlphaGo5algorithmwaspittedagainstprofessionalGoplayerLeeSedolinMarch2016,makingamoveonthe37thturnthatwaspreviouslyunimaginable.Thisalgorithmuseddeeplearning,aformofMLtechniquethatefficientlylearnsassociationsandstatisticalpatternsfromaverylargedataset.
7 RSutton,ABarto,ReinforcementLearning:anintroduction,MITPress,1998.
Chapter3–HowfirmsareusingAIandMLtechniques
AIandMLusebymarketintermediariesandassetmanagers
Marketintermediariesandassetmanagers’useofAIandMLisgrowing,astheirunderstandingofthetechnologyanditsutilityevolves.TheriseintheuseofelectronictradingplatformsandtheincreaseofavailabledatahaveledfirmstoconsidertheuseofAIandMLinseveralareas,includingfortheirtradingandadvisoryactivities,aswellasforriskmanagementandcompliance.
TheIOSCOfirmengagementrevealedthatwithinfinancialmarkets,AIandMLarebeingadoptedtoaugmentexistingprocessesandactivities,withaviewtoreducingcostandincreaseefficiency.AIandMLarefreeingupresourcestofocusonmorecognitiveaspects,suchasstrategy,portfolioselectionandgeneratinginvestmentideas.Marketintermediariesaredeployingthistechnologyin:
Advisoryandsupportservices;
Riskmanagement;
Clientidentificationandmonitoring;
Selectionoftradingalgorithm;and
Assetmanagement/Portfoliomanagement.
TheuseofAIandMLbyassetmanagersappearstobeinitsnascentstagesandismainlyusedtosupporthumandecision-making.AIandMLtechniquesarebeingusedto:
Optimiseportfoliomanagement;
Complementhumaninvestmentdecision-makingprocessesbysuggestinginvestmentrecommendations;and
Improveinternalresearchcapabilities,aswellasbackofficefunctions.
SomeassetmanagersarealsobeginningtouseAIandMLfororderexecution,brokerselectionandorderroutingpurposes(includingthroughmethodssuchasalgo-wheels).
8
Advisoryandsupportservices
AccordingtoIOSCO’sindustryengagement,mostrobo-advisorsorautomatedinvestmentadvisorsusesimple,rule-based(i.e.,deductive)algorithms,althoughsomearebeginningtoutilisepredictiveMLalgorithms.WhereMLisusedtoprovideadvisoryservices,mostfirmshavemanualinterventionprocesses.Theautomatedadvicesystemis,therefore,usuallylimitedtogeneratingpotentialadviceorassetallocationfortheinvestmentadvisertoreview.TheinvestmentadvisercanthenusethisAI-generatedadviceasappropriateand,wheresuitable,tomakearecommendationtotheclient.
8Algo-wheelsmayperformdifferentfunctionsindifferentpartsoftheworld.Inthiscontext,wedefinealgo-wheelstomeanasoftware/modelthataggregatesdatatoselectthestrategyandbrokerthroughwhichtorouteordersbeforegeneratingareportthatsetsoutthereasonbehindhowandwhereaparticulartradewasmade.
Riskmanagement
Riskmanagementinvolvesusingdatatopriceandmanageexposure,includingcredit,market,operationalandliquidityrisk.MarketintermediariesareharnessingML-basedriskmanagementsystemsforcreditriskmonitoring,whichcouldhelpprovideanearly-warningindicatorofpotentialcustomerdefaultsandcanhelpcreateadynamicmeasurementofacustomer’sriskprofiletobetterunderstand,forexample,whentowriteoffadebt.
MLisimprovingtheefficiencyofbackofficeprocessingandreportingfunctionswithinmarketintermediaries.Itisalsoincreasinglyusedtovisualisemarketriskbyanalysingvolatilitytrends,andtogaugeliquidityriskbyanalysingmulti-dimensionalriskandexposuredata.MLalgorithmsareincreasinglyusedtomonitorstaffe-mailsbyleveragingadvancedpatternrecognition.
Somemarketmakers,whoprovideliquiditytomarketparticipantsbyfacilitatingtransactionsareadoptingMLmodelsandreinforcementlearningtominimisetheirinventoryriskandmaximisetheutilityoftheirbalancesheet.
Similarly,someassetmanagersareseekingtoharnesstheadvantagesofthesetechniquesinriskmanagement.Somehedgefundsandassetmanagersareautomatingriskmanagementandcomplianceprocessesbytrackingthebehaviourofindividualportfoliomanagers,automatingexecutionqualityreportsandassessingmarketliquidityrisk.
Clientidentificationandmonitoring
MLhasallowedmarketintermediariestoautomatetheirclientonboarding,frauddetection,moneylaunderingandcyber-attackmonitoring.MarketintermediariesshouldgenerallyundertakeKnowYourCustomer(KYC)checksbeforeonboardingclientsandsellingthemproductsandservices.KYCentailscollectionandverificationofcomprehensivepersonalinformationfrompotentialclients,involvingprocessingunstructuredmetadata.
InductivereasoningalgorithmshelpaccuratelyidentifyfakephotoIDs,whilerecognisingdifferentphotosofthesameperson.MLcanalsobeusedforscreeningandmonitoringclientsandtransactionsagainstsanctionsorotherlists,todetectevidenceofpossiblemoneylaundering,terroristfinancingandotherfinancialcrimes.
Selectionoftradingalgorithms
Manymarketintermediariescurrentlyofferasoftwaresolutiontotheirclientsthatselectsanappropriatetradingstrategyand/orabrokerdependingonthemarketsituationandtradingobjectivesforbestexecutionpurposes,oftennamedanalgowheel.Algo-wheelsseektoclassifyhistoricaltradingandperformance,predicttheperformanceofstrategiesandbrokeralgorithms,andrecommendwhentouseaparticularalgorithm.Usingalgo-wheelstooptimallyexecutesimplerordersallowsthetradertofocusonmorecomplextradeflows.
Predictivedataanalyticsareenablingtheidentificationofpotentialmarketconditionsconducivetoaflashcrashtypeevent.
Assetmanagement/Portfoliomanagement
Supervisedlearning,whereafunctionisinferredfromlabelledtrainingdata,hasbeenusedforsmall-scalepatternrecognitionandsimplepredictionmodelstoaidtradingdecisionswithinassetmanagersandmarketintermediariesforseveralyears.
Marginpressureandcompetitionisdrivinginnovationamongstassetmanagers.Tocompete,someactivemanagersthattraditionallyemphasisedtheirfundamentalresearchcapabilitiesarebeginningtoexpandalreadyexistingquantitativeapproachesbyleveragingdiversifieddatasources–suchassocialmedia,geospatialdata,andothermetadatatoenhanceinternalresearch.
Incertaincases,thesemethodsarebeingusedforasset-allocationandpricingsuchasidentifyingrelationshipsinmetadatawhichcouldbeusedtogeneratetradeideasoralphasignalsandforecastassetpricesbasedonhistoricalpricesaswellascurrenttrends.Moreover,assetmanagersmayapplythesetechniquestopricenewinvestmentproductscompetitively.Theydosobyusingdataonexistinginvestmentproductswithsimilarstructuresand/orconstituentassets.Otherapplicationsincludeinvestmentcompliancechecks,transferagencyactivitiesandclientservicing.
Chapter4–IdentifiedPotentialRisksandHarmsPosedbytheUseofAIandML
IOSCO’sindustryengagementrevealedthattheevolutionandincreasingadoptionofAIandMLmayraise(eitherintentionallyorunintentionally)anumberofconductconcernsformarketintermediariesandassetmanagers,regarding:
Governanceandoversight;
Algorithmdevelopment,testingandongoingmonitoring;
Dataqualityandbias;
Transparencyandexplainability;
Outsourcing;and
Ethicalconcerns.
Governanceandoversight
FirmsimplementingAIandMLmostlyrelyonexistinggovernanceandoversightarrangementstosignoffandoverseethedevelopmentanduseofthetechnology.Inmostinstances,theexistingreviewandseniorleadership-levelapprovalprocesseswerefollowedtodeterminehowrisksweremanaged,andhowcompliancewithexistingregulatoryrequirementswasmet.AIandMLalgorithmsweregenerallynotregardedasfundamentallydifferentfrommoretraditionalalgorithmsandfewfirmsidentifiedaneedtointroducenewormodifyexistingproceduralcontrolstomanagespecificAIandMLrisks.
Somefirmsindicatedthatthedecisiontoinvolveseniorleadershipingovernanceandoversightremainsadepartmentalorbusinesslineconsideration,ofteninassociationwiththeriskandITordatasciencegroups.Therewerealsovaryingviewsonwhethertechnicalexpertiseisnecessaryfromseniormanagementparticipatinginandoverseeingcontrolfunctionssuchasriskmanagement.Despitethis,mostfirmsexpressedtheviewthattheultimateresponsibilityandaccountabilityfortheuseofAIandMLwouldliewiththeseniorleadershipofthefirm.
SomefirmsnotedthatthelevelofinvolvementofriskandcompliancetendstofocusprimarilyondevelopmentandtestingofAIandMLratherthanthroughthelifecycleofthemodel(i.e.,implementationandongoingmonitoring).Generally,onceimplemented,somefirmsrelyonthebusinesslinetoeffectivelyoverseeandmonitortheuseoftheAIandML.Respondentsalsonotedthatrisk,complianceandauditfunctionsshouldbeinvolvedthroughoutallstagesofthedevelopmentofAIandML.
ManyfirmsdidnotemployspecificcompliancepersonnelwiththeappropriateprogrammingbackgroundtoappropriatelychallengeandoverseethedevelopmentofMLalgorithms.Withmuchofthetechnologystillatanexperimentalstage,thetechniquesandtoolkitsatthedisposalofcomplianceandoversight(riskandinternalaudit)functionscurrentlyseemlimited.Insomecases,thisiscompoundedbypoorrecordkeeping,resultinginlimitedcompliancevisibilityastowhichspecificbusinessfunctionsarereliantonAIandMLatanygivenpointintime.
Algorithmdevelopment,testingandongoingmonitoring
Itisimportantthatfirmshaverobustandwellunderstooddevelopmentandtestingframeworksinplace,regardlessofwhethertheyareusingAIandMLortraditionalalgorithms.
Overall,IOSCO’sengagementshowedthatinmostcasesthereisnotanestablishedframeworkforspecificallydevelopingAIandML.Instead,manyfirmsusethesamedevelopmentandtestingframeworksthattheyusefortraditionalalgorithmsandstandardsystemdevelopmentmanagementprocesses.
Firmsthatusealgorithmsshouldconsidermaintaininganappropriatedevelopmentandtestingframework,whichisconsistentlyappliedacrossallrelevantaspectsofthebusiness.ThisisparticularlyimportantwherefirmsareusingAIandMLwithintheiralgorithmictradingstrategies.
Algorithmsrelyonqualitydataandmostfirmsrecognisetheneedforqualitydatainputs.Excessiveimmaterial,or“noisy”dataisunwanteddatathatdoesnotcontributetoarelationshipandmaycauseMLalgorithmstomissthesignalinthedataandbehaveunexpectedly.
Robustdevelopmentandtestingcontrolsarenecessarytodistinguishsignalsandstatisticallysignificantdatafromthenoise.Unliketraditionalalgorithms,asmoredataisprocessedbyMLalgorithms,theymaybehaveunpredictablyastheyareexposedtonewdatapatterns.MLalgorithmsshouldthereforealsobecontinuouslymonitoredthroughouttheirdeploymenttohelpensuretheydonotbehaveinexplicablyowingtoasubtleshiftintheoperatingconditionsorexcessivenoise.Whilesomefirmsnotedtheyreviewandreviseexistingmodelsasnecessary,somefirmsfocuslessonmanagingmodelsinthepost-productionphasesothattheyperformastheyshouldovertime.Unliketraditionalalgorithms,MLalgorithmscontinuallylearnanddevelopovertime.Itisimportantthattheyaremonitoredtoensurethattheycontinuetoperformasoriginallyintended.
Dataqualityandbias
TheperformanceofAIandMLisinherentlydependentonthequalityofthedatasetparticularlywhenbuildingthemodel.AccordingtoafewoftherespondentstotheConsultationReport,thequalityofthedatasetsusedinthelearningphasecanhaveamaterialimpactonthepotentialoutcomesandperformanceofAIandMLapplications.Intheviewoftherespondents,assuchitisakeyrisk.Accordingtosomerespondents,anotherriskrelatedtodatasetsisthesourcingofsufficientlylargedatasetstotraintheapplications,particularlywhenrelatedtoinvestmentdecisions.
Learnedbiasinthedatasetcanimpactthedecisionsmadebysuchalgorithmsandmayresultindiscriminativedecisionsandprovideundesirableoutcomestomarketparticipants.Forexample,askingquestionsphrasedinacertainwayorinacertainsequencemayleadtoaresponsethatintroducesimplicitorexplicitbiasfromtherespondents.Suchadataset,whereabiasmayhavebeenintroducedbyeitherthequestionerorbytherespondents,willinfluencetheconclusionsreachedbythealgorithm.Anyoutputbasedonsuchabiaswilllikelydegrade
theperformanceofthealgorithmmorequicklyovertimeandcouldresultinconsumerdetriment.
9
Biasmayalsobeinadvertentlyintroducedduringdatacleansing–apre-processingstepoftennecessarytoimprovedataquality.CleaningdatabeforeapplyingMLcanincreasethesignal-to-noiseratioallowingformoremeaningfulinterpretationstobederived.However,cleansingdatainvolvessubjectivedecisions,whichmayinadvertentlyintroduceotherbiases.
Transparencyandexplainability
TheeffectiveuseandadoptionofAIandMLrequirealgorithmsthatarenotonlyaccuratebutarealsounderstandablebyfirms(includingfrontline,complianceandriskpersonnel),marketcounterparties,clientsandregulators.Itispossiblethatrisksareintroducedifoutcomescannotbefullyexplainable.Whileincreasedtransparencyinfirms’useofAIandMLcouldimprovepublicunderstandingandconfidenceintheuseofthetechnology,excessivetransparencycouldcreateconfusionoropportunitiesforindividualstoexploitormanipulatethemodels.Theleveloftransparencywillalsodifferdependingontheaudience;forexample,aregulatormayrequiremoredetailedinformationthanaclient.TheseconsiderationsneedtobebalancedindeterminingtheappropriateleveloftransparencyintheuseofAIandML.
Itisimportantthatfirmsappropriatelydiscloseinformationabouttheirserviceofferings,tohelpclientsunderstandthenatureandrisksofproductsandserviceofferings,sothattheycanmakeinformeddecisions.ApplyingunexplainableMLalgorithmstorefineatradingstrategycouldexposethefirmtounacceptablelevelsoflegalandregulatoryrisk.Firmsofferingautomatedinvestmentservices,includingroboadviceandautomatedportfolioconstructionshouldappropriatelydisclosethenatureoftheuseofMLandtheautomationintheirserviceoffering.
SomeMLmodelsoperateasa“blackbox”withlimitedclarityonthereasoningbehindt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝行業(yè)人才梯隊建設(shè)
- 新興行業(yè)營銷策略總結(jié)
- 幼兒園技能培養(yǎng)的多元化探索計劃
- 農(nóng)業(yè)行業(yè)營業(yè)員崗位總結(jié)
- 有效利用客戶關(guān)系管理系統(tǒng)
- 虛擬現(xiàn)實(shí)行業(yè)銷售工作總結(jié)
- 大班保育工作總結(jié)模板集合5篇
- 2024年服裝行業(yè)線上線下聯(lián)合營銷合同范本3篇
- 建筑裝潢行業(yè)室內(nèi)設(shè)計師培訓(xùn)總結(jié)
- 2024外墻清洗與外墻隔熱層施工服務(wù)合同范本3篇
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測卷(含答案)
- 電力電子技術(shù)(廣東工業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 2024年中國移動甘肅公司招聘筆試參考題庫含答案解析
- 復(fù)方氨基酸雙肽產(chǎn)品知識講義
- 奇門遁甲在現(xiàn)代商業(yè)競爭中的應(yīng)用
- 績效考核評分標(biāo)準(zhǔn)
- 電力建設(shè)施工技術(shù)管理
- 江蘇省全日制勞動合同書模板
- (完整版)八年級下冊所有古詩及文言文(人教版)
- 鋁合金攪拌摩擦焊的工藝研究
- JGP9L-6(10)(Y)(ZNCK-4A)-霍工090608結(jié)構(gòu)圖電子版的
評論
0/150
提交評論