版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2019福建中考數(shù)學(xué)試題分類解析匯編專項7-統(tǒng)計與概率注意事項:認真閱讀理解,結(jié)合歷年的真題,總結(jié)經(jīng)驗,查找不足!重在審題,多思考,多理解!無論是單選、多選還是論述題,最重要的就是看清題意。在論述題中,問題大多具有委婉性,尤其是歷年真題部分,在給考生較大發(fā)揮空間的同時也大大增加了考試難度??忌J真閱讀題目中提供的有限材料,明確考察要點,最大限度的挖掘材料中的有效信息,建議考生答題時用筆將重點勾畫出來,方便反復(fù)細讀。只有經(jīng)過仔細推敲,揣摩命題老師的意圖,積極聯(lián)想知識點,分析答題角度,才能夠?qū)⒖键c鎖定,明確題意。專題7:統(tǒng)計與概率選擇題1.〔福建泉州3分〕以下事件為必然事件的是A、打開電視機,它正在播廣告B、拋擲一枚硬幣,一定正面朝上C、投擲一枚普通的正方體骰子,擲得的點數(shù)小于7D、某彩票的中獎機會是1%,買1張一定不會中獎【答案】C?!究键c】隨機事件?!痉治觥扛鶕?jù)事件的分類的定義及分類對四個選項進行逐一分析即可:A、打開電視機,它正在播廣告是隨機事件,故本選項錯誤;B、拋擲一枚硬幣,正面朝上是隨機事件,故本選項錯誤;C、因為一枚普通的正方體骰子只有1~6個點數(shù),所以擲得的點數(shù)小于7是必然事件,故本選項正確;D、某彩票的中獎機會是1%,買1張中獎或不中獎是隨機事件,故本選項錯誤。應(yīng)選C。2.〔福建福州4分〕從1,2,﹣3三個數(shù)中,隨機抽取兩個數(shù)相乘,積是正數(shù)的概率是 A、0 B、QUOTE13 C、QUOTE23 D、1【答案】B?!究键c】列表法或樹狀圖法,概率?!痉治觥慨嫎錉顖D:圖中可知,共有6種等可能情況,積是正數(shù)的有2種情況,故概率為QUOTE13。應(yīng)選B。3.〔福建漳州3分〕以下事件中,屬于必然事件的是A、打開電視機,它正在播廣告 B、打開數(shù)學(xué)書,恰好翻到第50頁C、拋擲一枚均勻的硬幣,恰好正面朝上 D、一天有24小時【答案】D?!究键c】必然事件?!痉治觥扛鶕?jù)必然事件的定義:一定發(fā)生的事件,即可判斷:A、是隨機事件,應(yīng)選項錯誤;B、是隨機事件,應(yīng)選項錯誤;C、是隨機事件,應(yīng)選項錯誤;D、是必然事件,應(yīng)選項正確。應(yīng)選D。4〔福建三明4分〕有5張形狀、大小、質(zhì)地均相同的卡片,背面完全相同,正面分別印有等邊三角形、平行四邊形、菱形、等腰梯形和圓五種不同的圖案、將這5張卡片洗勻后正面朝下放在桌面上,從中隨機抽出一張,抽出的卡片正面圖案是中心對稱圖形的概率為A、eq\f(1,5)B、eq\f(2,5)C、eq\f(3,5)D、eq\f(4,5)【答案】C?!究键c】概率,中心對稱圖形?!痉治觥俊吒鶕?jù)中心對稱圖形的性質(zhì),旋轉(zhuǎn)180°后,能夠與原圖形完全重合的圖形是中心對稱圖形,∴平行四邊形、菱形、圓3個是中心對稱圖形,∵共有5張不同卡片,∴抽出的卡片正面圖案是中心對稱圖形的概率為QUOTE35eq\f(3,5)。應(yīng)選C。5.〔福建漳州3分〕九年級一班5名女生進行體育測試,她們的成績分別為70,80,85,75,85〔單位:分〕,這次測試成績的眾數(shù)和中位數(shù)分別是A、79,85 B、80,79 C、85,80 D、85,85【答案】C?!究键c】眾數(shù),中位數(shù)?!痉治觥勘姅?shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),數(shù)據(jù)85出現(xiàn)了兩次最多為眾數(shù);中位數(shù)是一組數(shù)據(jù)從小到大〔或從大到小〕重新排列后,最中間的那個數(shù)〔最中間兩個數(shù)的平均數(shù)〕。由此將這組數(shù)據(jù)重新排序為70,75,80,85,85,∴中位數(shù)為80。應(yīng)選C。6.〔福建廈門3分〕以下事件中,必然事件是 A、擲一枚普通的正方體骰子,骰子停止后朝上的點數(shù)是1 B、擲一枚普通的正方體骰子,骰子停止后朝上的點數(shù)是偶數(shù) C、拋擲一枚普通的硬幣,擲得的結(jié)果不是正面就是反面 D、從裝有99個紅球和1個白球的布袋中隨機取出一個球,這個球是紅球【答案】C?!究键c】必然事件?!痉治觥勘厝皇录褪且欢òl(fā)生的事件,根據(jù)定義即可判斷:A、是隨機事件,應(yīng)選項錯誤;B、是隨機事件,應(yīng)選項錯誤;C、是必然事件,應(yīng)選項正確;D、是隨機事件,應(yīng)選項錯誤。應(yīng)選C。7.〔福建龍巖4分〕數(shù)名射擊運動員第一輪比賽成績?nèi)缦卤硭荆画h(huán)數(shù)78910人數(shù)4231那么他們本輪比賽的平均成績是A、7.8環(huán)B、7.9環(huán)C.8.l環(huán)D、8.2環(huán)【答案】C?!究键c】加權(quán)平均數(shù)?!痉治觥科骄鶖?shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),從而他們本輪比賽的平均成績是:〔7×4+8×2+9×3+10×1〕÷10=8.1〔環(huán)〕。應(yīng)選C。8.〔福建南平4分〕以下說法錯誤的選項是A、必然事件發(fā)生的概率為1 B、不確定事件發(fā)生的概率為0.5C、不可能事件發(fā)生的概率為0 D、隨機事件發(fā)生的概率介于0和1之間【答案】B。【考點】概率的意義?!痉治觥緼、∵必然事件發(fā)生的概率為1,故本選項正確;B、∵不確定事件發(fā)生的概率介于1和0之間,故本選項錯誤;C、∵不可能事件發(fā)生的概率為0,故本選項正確;D、∵隨機事件發(fā)生的概率介于0和1之間,故本選項正確。應(yīng)選B。9.〔福建南平4分〕以下調(diào)查中,適宜采用全面調(diào)查方式的是A、了解南平市的空氣質(zhì)量情況 B、了解閩江流域的水污染情況C、了解南平市居民的環(huán)保意識 D、了解全班同學(xué)每周體育鍛煉的時間【答案】D?!究键c】全面調(diào)查與抽樣調(diào)查?!痉治觥緼、了解南平市的空氣質(zhì)量情況,由于南平市地域大,時間多,不能全面調(diào)查,應(yīng)選項錯誤;B、了解閩江流域的水污染情況,由于工作任務(wù)太大,具有破壞性,不能全面調(diào)查,應(yīng)選項錯誤;C、了解南平市居民的環(huán)保意識,由于南平市居民人口多,任務(wù)重,不能全面調(diào)查,應(yīng)選項錯誤;D、了解全班同學(xué)每周體育鍛煉的時間,任務(wù)不重,能全面調(diào)查,應(yīng)選項正確。應(yīng)選D。10.〔福建寧德4分〕“是實數(shù),”這一事件是.A.必然事件B.不確定事件C.不可能事件D.隨機事件【答案】A?!究键c】必然事件。【分析】“是實數(shù),”恒成立,故根據(jù)必然事件的定義,它是必然事件。應(yīng)選A?!径刻羁疹}1.〔福建龍巖3分〕一組數(shù)據(jù)10,14,20,24、19,16的極差是▲?!敬鸢浮?4?!究键c】極差。【分析】根據(jù)極差的定義用一組數(shù)據(jù)中的最大值減去最小值即可求得:極差為24-10=14。2.〔福建龍巖3分〕袋子中有3個紅球和6個白球,這些球除頗色外均完全相同,那么從袋子中隨機摸出一個球是白球的概率是▲,【答案】?!究键c】概率?!痉治觥扛鶕?jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率。因為個袋子中裝有3個紅球6個白球,共9個球,所以隨機地從這個袋子中摸出一個球,摸到白球的概率為。3.〔福建莆田4分〕數(shù)據(jù)的平均數(shù)是1,那么這組數(shù)據(jù)的中位數(shù)是▲?!敬鸢浮??!究键c】中位數(shù),算術(shù)平均數(shù)?!痉治觥肯雀鶕?jù)平均數(shù)的定義求出的值,然后根據(jù)中位數(shù)的定義求解:由題意可知,〔1+2+-1-2〕÷5=1,∴=5,這組數(shù)據(jù)從小到大排列-2,-1,1,2,5,∴中位數(shù)是1。4.〔福建福州4分〕地球表面陸地面積與海洋面積的比約為3:7、如果宇宙中飛來一塊隕石落在地球上,那么落在陸地上的概率是QUOTE310▲、【答案】?!究键c】幾何概率。【分析】根據(jù)幾何概率的求法:看陸地的面積占總面積的多少即為所求的概率:由題意知:地球表面陸地面積與海洋面積的比約為3:7,即相當(dāng)于將地球總面積分為10份,陸地占3份,所以隕石落在陸地上的概率是QUOTE310。5.〔福建漳州4分〕口袋中有2個紅球和3個白球,每個球除顏色外完全相同,從口袋中隨機摸出一個紅球的概率是_▲、【答案】eq\f(2,5)?!究键c】概率?!痉治觥扛鶕?jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率。所以口袋中隨機摸出一個紅球的概率是eq\f(2,5)。6.〔福建三明4分〕甲、乙兩個參加某市組織的省“農(nóng)運會”鉛球項目選拔賽,各投擲6次,記錄成績,計算平均數(shù)和方差的結(jié)果為:eq\o(-,x)甲=13.5m,eq\o(-,x)乙=13.5m,S2甲=0.55,S2乙=0.50,那么成績較穩(wěn)定的是▲〔填“甲”或“乙”〕.【答案】乙?!究键c】方差?!痉治觥扛鶕?jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定。因為S甲2=0.55>S乙2=0.50,方差小的為乙,所以成績比較穩(wěn)定的是乙。7.〔福建廈門4分〕某年6月上旬,廈門市最高氣溫如下表所示:日期12345678910最高氣溫〔℃〕30283032343127323330那么,這些日最高氣溫的眾數(shù)為▲℃、【答案】30?!究键c】眾數(shù)。【分析】眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù),30出現(xiàn)3次是最多的數(shù),所以眾數(shù)為30。8.〔福建南平3分〕拋擲一枚質(zhì)地均勻的硬幣兩次,正面都朝上的概率是_▲、【答案】eq\f(1,4)?!究键c】列表法或樹狀圖法,概率。【分析】畫樹狀圖如下:共4種等可能情況,正面都朝上的情況數(shù)有1種,所以概率是eq\f(1,4)。9.〔福建南平3分〕某次跳繩比賽中,統(tǒng)計甲、乙兩班學(xué)生每分鐘跳繩的成績〔單位:次〕情況如下表:班級參加人數(shù)平均次數(shù)中位數(shù)方差甲45135149180乙45135151130〔1〕甲班平均成績低于乙班平均成績;〔2〕甲班成績的波動比乙班成績的波動大;〔3〕甲班成績優(yōu)秀人數(shù)少于乙班成績優(yōu)秀人數(shù)〔跳繩次數(shù)≥150次為優(yōu)秀〕其中正確的命題是_▲、〔只填序號〕【答案】②③?!究键c】算術(shù)平均數(shù),方差,中位數(shù)。78910【分析】根據(jù)平均數(shù)、中位數(shù)、方差的意義分析三個說法:兩個班的平均成績均為135次,故①錯誤;方差表示數(shù)據(jù)的波動大小,甲班的方差大于乙的,說明甲班的成績波動大,故7891010.〔福建寧德3分〕甲、乙倆射擊運動員進行10次射擊,甲的成績是7,7,8,9,8,9,10,9,9,9,乙的成績?nèi)缦聢D.那么甲、乙射擊成績的方差之間關(guān)系是▲(填“<”,“=”,“>”)、【答案】<?!究键c】折線統(tǒng)計圖,方差。【分析】由,甲的平均成績=〔7+7+8+9+8+9+10+9+9+9〕÷10=8.5乙的平均成績=〔8+9+7+10+7+9+10+7+10+8〕÷10=8.5∴=[2×〔7-8.5〕2+2×〔8-8.5〕2+5×〔9-8.5〕2+〔10-8.5〕2]÷10=0.85,=[3×〔7-8.5〕2+2×〔8-8.5〕2+2×〔9-8.5〕2+3×〔10-8.5〕2]÷10=1.45。∴<。【三】解答題1.〔福建泉州9分〕心理健康是一個人健康的重要標志之一、為了解學(xué)生對心理健康知識的掌握程度,某校從800名在校學(xué)生中,隨機抽取200名進行問卷調(diào)查,并按“優(yōu)秀”、“良好”、“一般”、“較差”四個等級統(tǒng)計,繪制成如下的頻數(shù)分布表和頻數(shù)分布直方圖、程度頻數(shù)頻率優(yōu)秀600.3良好100一般0.15較差0.05請根據(jù)圖表提供的信息,解答以下問題:〔1〕求頻數(shù)分布表中、、的值、并補全頻數(shù)分布直方圖;〔2〕請你估計該校學(xué)生對心理健康知識掌握程度達到“優(yōu)秀”的總?cè)藬?shù)、【答案】解:〔1〕∵抽樣的總?cè)藬?shù)為60÷0.3=200,∴=100÷200=0.5;=200×0.15=30;=200×0.05=10。根據(jù)較差的頻數(shù)為10補全頻數(shù)分布直方圖:〔2〕∵800×0.3=240,∴估計該校學(xué)生對心理健康知識掌握程度達到“優(yōu)秀”的總?cè)藬?shù)為240人?!究键c】頻數(shù)〔率〕分布表,頻數(shù)分布直方圖,頻數(shù)、頻率和總量的關(guān)系,用樣本估計總體?!痉治觥俊?〕由頻數(shù)〔率〕分布表知,優(yōu)秀的頻數(shù)60,頻率0.3,根據(jù)頻數(shù)、頻率和總量的關(guān)系可求得抽樣的總?cè)藬?shù),從而求得良好的頻率為0.5,一般的頻數(shù)為30,較差的頻數(shù)為10?!?〕根據(jù)頻數(shù)分布表可知優(yōu)秀學(xué)生的頻率為0.3,該校有800名學(xué)生,即可估計出該校學(xué)生對心理健康知識掌握程度達到“優(yōu)秀”的總?cè)藬?shù)。2〔福建漳州8分〕漳州市某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖〔不完整〕、請你根據(jù)圖中所給的信息解答以下問題:優(yōu)秀優(yōu)秀50%一般______不合格20%1224364860不合格一般優(yōu)秀72成績等級人數(shù)〔1〕請將以上兩幅統(tǒng)計圖補充完整;〔2〕假設(shè)“一般”和“優(yōu)秀”均被視為達標成績,那么該校被抽取的學(xué)生中有_▲人達標;〔3〕假設(shè)該校學(xué)生有1200人,請你估計此次測試中,全校達標的學(xué)生有多少人?【答案】解:〔1〕將兩幅統(tǒng)計圖補充完整:〔2〕96、〔3〕1200×(50%+30%)=960〔人〕答:估計全校達標的學(xué)生有960人?!究键c】扇形統(tǒng)計圖,條形統(tǒng)計圖,頻數(shù)、頻率和總量的關(guān)系,用樣本估計總體?!痉治觥俊?〕成績一般的學(xué)生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,從而求出成績優(yōu)秀的人數(shù),將兩幅統(tǒng)計圖補充完整?!?〕將成績一般和優(yōu)秀的人數(shù)相加即可?!?〕該校學(xué)生文明禮儀知識測試中成績達標的人數(shù)=1200×成績達標的學(xué)生所占的百分比。3.〔福建福州10分〕在結(jié)束了380課時初中階段數(shù)學(xué)內(nèi)容的教學(xué)后,唐老師計劃安排60課時用于總復(fù)習(xí),根據(jù)數(shù)學(xué)內(nèi)容所占課時比例,繪制如下統(tǒng)計圖表〔圖1~圖3〕,請根據(jù)圖表提供的信息,回答以下問題:〔1〕圖1中“統(tǒng)計與概率”所在扇形的圓心角為度;〔2〕圖2、3中的,;〔3〕在60課時的總復(fù)習(xí)中,唐老師應(yīng)安排多少課時復(fù)習(xí)“數(shù)與代數(shù)”內(nèi)容?【答案】解:〔1〕36?!?〕60;14?!?〕依題意,得45%×60=27。答:唐老師應(yīng)安排27課時復(fù)習(xí)“數(shù)與代數(shù)”內(nèi)容?!究键c】扇形統(tǒng)計圖,統(tǒng)計表,條形統(tǒng)計圖,頻數(shù)、頻率和總量的關(guān)系?!痉治觥俊?〕先計算出“統(tǒng)計與概率”所占的百分比,再乘以360°即可:〔1﹣45%﹣5%﹣40%〕×360°=36?!?〕根據(jù)數(shù)與代數(shù)所占的百分比,求得數(shù)與代數(shù)的課時總數(shù),再減去數(shù)與式和函數(shù),即為的值:;再用的值減去圖3中A,B,C,E的值,即為的值;?!?〕根據(jù)頻數(shù)、頻率和總量的關(guān)系用60乘以45%即可。4.〔福建泉州9分〕四張小卡片上分別寫有數(shù)字1、2、3、4、它們除數(shù)字外沒有任何區(qū)別,現(xiàn)將它們放在盒子里攪勻、〔1〕隨機地從盒子里抽取一張,求抽到數(shù)字2的概率;〔2〕隨機地從盒子里抽取一張、不放回再抽取第二張、請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求抽到的數(shù)字之和為5的概率、【答案】解:〔1〕P〔抽到數(shù)字2〕=?!?〕畫樹狀圖:從圖可知,兩次抽取小卡片抽到的數(shù)字之和共有12種等可能的結(jié)果,其中抽到的數(shù)字之和為5的有4種,∴P〔抽到的數(shù)字之和為5〕=?!究键c】列表法或樹狀圖法,概率?!痉治觥俊?〕隨機地從盒子里抽取一張,共有4種等可能的結(jié)果,而抽到數(shù)字2的占1種,利用概率的概念即可求得抽到數(shù)字2的概率?!?〕利用樹狀圖或列表展示所有12種等可能的結(jié)果,其中抽到的數(shù)字之和為5有4種,利用概率的概念即可求得抽到的數(shù)字之和為5的概率5.〔福建三明10分〕某校為慶祝中國共產(chǎn)黨90周年,組織全校1800名學(xué)生進行黨史知識競賽、為了解本次知識競賽成績的分布情況,從中隨機抽取了部分學(xué)生的成績進行統(tǒng)計分析,得到如下統(tǒng)計表:分組頻數(shù)頻率59.5~69.530.0569.5~79.512a79.5~89.5b0.4089.5~100.5210.35合計c1根據(jù)統(tǒng)計表提供的信息,回答以下問題:〔1〕a=,b=,c=;〔2〕上述學(xué)生成績的中位數(shù)落在組范圍內(nèi);〔3〕如果用扇形統(tǒng)計圖表示這次抽樣成績,那么成績在89.5~100.5范圍內(nèi)的扇形的圓心角為度;〔4〕假設(shè)競賽成績80分〔含80分〕以上的為優(yōu)秀,請你估計該校本次競賽成績優(yōu)秀的學(xué)生有人、【答案】解:〔1〕0.2,24,60。〔2〕79.5~89.5?!?〕126°?!?〕1350、【考點】頻數(shù)〔率〕分布表,頻數(shù)、頻率和總量的關(guān)系,中位數(shù),扇形統(tǒng)計圖的圓心角,用樣本估計總體。【分析】〔1〕根據(jù)頻數(shù)、頻率和總量的關(guān)系可求解:a=1﹣0.05﹣0.40﹣0.35=0.2,b=3÷0.05×0.40=24,c=3÷0.05=60?!?〕上述學(xué)生成績的中位數(shù)應(yīng)該是第30和31個成績的平均數(shù),而第30和31個成績都落在79.5~89.5組范圍內(nèi)。〔3〕求出89.5~100.5所占的百分比×360°即可求出結(jié)果:360°×0.35=126°。〔4〕求出優(yōu)秀率,總數(shù)去乘以優(yōu)秀率得到結(jié)果:1800×〔0.40+0.35〕=1350。6.〔福建廈門8分〕甲袋中有三個紅球,分別標有數(shù)字1、2、3;乙袋中有三個白球,分別標有數(shù)字2、3、4、這些球除顏色和數(shù)字外完全相同、小明先從甲袋中隨機摸出一個紅球,再從乙袋中隨機摸出一個白球、請畫出樹狀圖,并求摸得的兩球數(shù)字相同的概率、【答案】解:畫樹狀圖:圖中可見,共有9種等可能的結(jié)果,數(shù)字相同的有2種,∴P〔兩個球上的數(shù)字相同〕=QUOTE29?!究键c】樹狀圖法,概率。【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率。由題意畫樹狀圖,求得所有等可能的結(jié)果與摸出兩球的數(shù)字相同的情況,求出概率。7.〔福建莆田8分〕 “國際無煙日”來臨之際、小敏同學(xué)就一批公眾對在餐廳吸煙所持的三種態(tài)度(徹底禁煙、建立吸煙室、其他)進行了調(diào)查、并把調(diào)查結(jié)果繪制成如圖1、2的統(tǒng)計圖、請根據(jù)下面圖中的信息回答以下問題:〔1〕(2分)被調(diào)查者中,不吸煙者中贊成徹底禁煙的人數(shù)有____________人:〔2〕(2分)本次抽樣凋查的樣本容量為____________〔3〕(2分)被調(diào)查者中、希望建立吸煙室的人數(shù)有____________人;〔4〕(2分)某市現(xiàn)有人口約300萬人,根據(jù)圖中的信息估計贊成在餐廳沏底禁煙的人數(shù)約有____________萬人、【答案】解:〔1〕82。〔2〕200。〔3〕56。〔4〕159?!究键c】條形統(tǒng)計圖,扇形統(tǒng)計圖,頻數(shù)、頻率和總量的關(guān)系,用樣本估計總體。【分析】〔1〕讀圖易得:不吸煙中贊成在餐廳徹底禁煙的人數(shù)是82人?!?〕用徹底禁煙的人數(shù)除以所對應(yīng)的百分比即可求出總?cè)藬?shù):〔82+24〕÷53%=200人?!?〕用總?cè)藬?shù)乘以希望在餐廳設(shè)立吸煙室的百分比即可:200×28%=56人?!?〕用300萬乘以贊成徹底禁煙的百分比即可:300×53%=159萬人。8〔福建南平10分〕在“5·12防災(zāi)減災(zāi)日”之際,某校隨機抽取部分學(xué)生進行“安全逃生知識”測驗根據(jù)這部分學(xué)生的測驗成績〔單位:分〕繪制成如下統(tǒng)計圖〔不完整〕:頻數(shù)分布表頻數(shù)分布直方圖分組頻數(shù)242468106012分數(shù)頻數(shù)/人014161870809010060≤x<7020.0570≤x<801080≤x<900.4090≤x≤100120.30合計1.00請根據(jù)上述圖表提供的信息,完成以下問題:〔1〕分別補全頻數(shù)分布表和頻數(shù)分布直方圖;〔2〕假設(shè)從該校隨機1名學(xué)生進行這項測驗,估計其成績不低于80分的概率約為_▲、分組頻數(shù)頻率60≤x<7020.0570≤x<80100.2580≤x<90160.4090≤x≤100120.30合計401.00【答案】解:〔1〕補全頻數(shù)分布表和頻數(shù)分布直方圖如下:〔2〕0.7?!究键c】頻數(shù)〔率〕分布表,頻數(shù)分布直方圖,頻數(shù)、頻率和總量的關(guān)系,概率?!痉治觥俊?〕根據(jù)60~70組的頻數(shù)為2,頻率為0.05,可求出調(diào)查的總?cè)藬?shù):2÷0.05=40;從而求出70~80組的頻率:10÷40=0.25;80~90組的頻數(shù):40×0.4=16。據(jù)此補全頻數(shù)分布表和頻數(shù)分布直方圖?!?〕成績不低于80分的概率=80~90組的概率+90~100組的概率=0.40+0.30=0.70。9.〔福建龍巖10分〕為慶祝建黨90周年,某校團委計劃在“七·一”前夕舉行“唱響紅歌”班級歌詠比賽,要確定一首喜歡人數(shù)最多的歌曲為每班必唱歌曲。為此提供代號為A、B、C、D四首備選曲目讓學(xué)生選擇,經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖。請根據(jù)圖①,圖②所提供的信息,解答以下問題:〔1〕本次抽樣調(diào)查的學(xué)生有_________名,其中選擇曲目代號為A的學(xué)生占抽樣總數(shù)的百分比是________%;〔2〕請將圖②補充完整;〔3〕假設(shè)該校共有1200名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計全校共有多少名學(xué)生選擇此必唱歌曲?〔要有解答過程〕【答案】解:〔1〕180;20%。〔2〕∵選C的有180-36-30-42=72〔人〕,∴據(jù)此補圖:〔3〕∵喜歡人數(shù)最多的歌曲為每班必唱歌曲,代號為C的曲目喜歡人數(shù)最多,為72人,∴喜歡C曲目的人數(shù)占抽樣人數(shù)的百分比為72÷180=40%。∴估計全校選擇此必唱歌曲共有:1200×40%=480〔名〕?!究键c】條形統(tǒng)計圖,扇形統(tǒng)計圖,頻數(shù)、頻率和總量的關(guān)系,用樣本估計總體、【分析】〔1〕根據(jù)選D的學(xué)生人數(shù)和所占的百分比即可求出本次抽樣調(diào)查的學(xué)生總數(shù)42÷=180,根據(jù)選擇曲目代號為A的學(xué)生數(shù)除以本次抽樣調(diào)查的學(xué)生總數(shù)×100%=20%?!?〕根據(jù)抽樣調(diào)查的總數(shù)減去喜歡A、B、D的學(xué)生人數(shù)即可得出答案補圖?!?〕根據(jù)該校學(xué)生總數(shù)乘以選擇必唱歌曲學(xué)生所占的比例即可得出結(jié)果。10.〔福建寧德8分〕據(jù)訊:《福建省第六次全國人口普查主要數(shù)據(jù)公報》顯示,全省常住人口為36894216人.人口地區(qū)分布的數(shù)據(jù)如圖1.另外,我省區(qū)域面積分布情況如圖2.⑴全省常住人口用科學(xué)記數(shù)法表示為:___________人〔保留四個有效數(shù)字〕.⑵假設(shè)泉州人口占全省常住人口22.03%,寧德占7.64%,請補全圖1統(tǒng)計圖;⑶全省九地市常住人口這組數(shù)據(jù)的中位數(shù)是_________萬人;⑷全省平均人口密度最大的是_______市,達_____人/平方千米.〔平均人口密度=常住人口數(shù)÷區(qū)域面積,結(jié)果精確到個位〕【答案】解:⑴3.689×107。⑵泉州人口36894216×22.03%≈813萬人,寧德人口36894216×7.64%≈282萬人。據(jù)此補全條形統(tǒng)計圖如下:⑶282。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于2025年度區(qū)塊鏈技術(shù)應(yīng)用合作協(xié)議3篇
- 2025年度汽車租賃市場拓展合作協(xié)議合同4篇
- 2025年度二零二五年度獼猴桃包裝設(shè)計及品牌推廣合同4篇
- 二零二五版建筑工程安全施工許可證申請合同3篇
- 2025版信托資金借貸合同爭議解決爭議管轄條款3篇
- 2025年度健康管理機構(gòu)臨時健康管理師勞動合同4篇
- 二零二五年度海上旅游船租賃服務(wù)合同范本3篇
- 個人住宅買賣法律合同(2024年修訂)版B版
- 2025年度戶外運動用品門店承包管理服務(wù)協(xié)議4篇
- 二零二五年柑桔加工副產(chǎn)品回收利用合同2篇
- 道路瀝青工程施工方案
- 《田口方法的導(dǎo)入》課件
- 內(nèi)陸?zhàn)B殖與水產(chǎn)品市場營銷策略考核試卷
- 票據(jù)業(yè)務(wù)居間合同模板
- 承包鋼板水泥庫合同范本(2篇)
- DLT 572-2021 電力變壓器運行規(guī)程
- 公司沒繳社保勞動仲裁申請書
- 損傷力學(xué)與斷裂分析
- 2024年縣鄉(xiāng)教師選調(diào)進城考試《教育學(xué)》題庫及完整答案(考點梳理)
- 車借給別人免責(zé)協(xié)議書
- 應(yīng)急預(yù)案評分標準表
評論
0/150
提交評論