湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題含解析_第1頁
湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題含解析_第2頁
湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題含解析_第3頁
湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題含解析_第4頁
湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省醴陵市重點名校2023-2024學年中考適應性考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某商店有兩個進價不同的計算器都賣了80元,其中一個贏利60%,另一個虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺2.估計5﹣的值應在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間3.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯誤的是()A.①② B.②④ C.①③ D.③④4.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次5.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位6.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.27.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根8.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.39.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.10.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米2二、填空題(共7小題,每小題3分,滿分21分)11.16的算術平方根是.12.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.13.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是______.14.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.15.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.16.已知點A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關系是:y1__y2;17.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.三、解答題(共7小題,滿分69分)18.(10分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).19.(5分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式的解集為.20.(8分)今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結果保留根號)21.(10分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).22.(10分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關系的圖象,根據(jù)圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時,兩人相距15km?23.(12分)甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經過多長時間恰好裝滿第1箱?再經過多長時間恰好裝滿第2箱?24.(14分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結果保留根號)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:第一個的進價為:80÷(1+60%)=50元,第二個的進價為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點:一元一次方程的應用2、C【解析】

先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應在7和8之間,故選C.【點睛】本題考查了估算無理數(shù)的大小,解決本題的關鍵是估算出無理數(shù)的大小.3、B【解析】

先根據(jù)題意畫出圖形,再根據(jù)平行線的性質及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯誤.故選B.【點睛】本題考查的是方向角,平行線的性質,特殊角的三角函數(shù)值,解答此類題需要從運動的角度,正確畫出方位角,再結合平行線的性質求解.4、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.5、A【解析】將拋物線平移,使平移后所得拋物線經過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經過原點,故選A.6、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.7、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C8、D【解析】

求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.9、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.10、C【解析】

連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】

正數(shù)的正的平方根叫算術平方根,0的算術平方根還是0;負數(shù)沒有平方根也沒有算術平方根∵∴16的平方根為4和-4∴16的算術平方根為412、-1【解析】

利用反比例函數(shù)的性質,即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內,y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

的值可以取等,答案不唯一

故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.13、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.則第8個數(shù)為13+8=21;第9個數(shù)為21+13=34;第10個數(shù)為34+21=1.故答案為1.點睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數(shù)據(jù)等認真進行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.14、【解析】

利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關鍵.15、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.16、>【解析】

根據(jù)反比例函數(shù)的性質求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了反比例函數(shù)的性質.17、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質,平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!三、解答題(共7小題,滿分69分)18、(1);(2)【解析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.19、(1)x≤1;(1)x≥﹣1;(3)見解析;(4)﹣1≤x≤1.【解析】

先求出不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在數(shù)軸上表示出來:;(4)原不等式組的解集為﹣1≤x≤1,故答案為x≤1,x≥﹣1,﹣1≤x≤1.【點睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.20、(1)B點到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解析】

(1)過點B作BH⊥CA交CA的延長線于點H,根據(jù)三角函數(shù)可求BH的長;(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進一步得到AD的長.【詳解】解:(1)過點B作BH⊥CA交CA的延長線于點H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從A到D航行了(75﹣25)海里.【點睛】本題主要考查了勾股定理的應用,解直角三角形的應用-方向角問題.能合理構造直角三角形,并利用方向角求得三角形內角的大小是解決此題的關鍵.21、C點到地面AD的距離為:(2+2)m.【解析】

直接構造直角三角形,再利用銳角三角函數(shù)關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數(shù)是解題的關鍵.22、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時或小時,兩人相距15km.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得s與t的函數(shù)關系式;(2)根據(jù)(1)中的函數(shù)解析式可以解答本題.【詳解】解:(1)設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論