湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題含解析_第1頁
湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題含解析_第2頁
湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題含解析_第3頁
湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題含解析_第4頁
湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省監(jiān)利縣2024年中考數(shù)學(xué)全真模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.2.已知一次函數(shù)y=﹣2x+3,當(dāng)0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣73.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.4.如圖,△ABC是等邊三角形,點P是三角形內(nèi)的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.35.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm6.如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC7.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°8.在體育課上,甲,乙兩名同學(xué)分別進行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差9.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°10.下列運算正確的是()A.=x5 B. C.·= D.3+2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.12.分解因式8x2y﹣2y=_____.13.如圖,ABCD的周長為36,對角線AC,BD相交于點O.點E是CD的中點,BD=12,則△DOE的周長為.14.一元二次方程x(x﹣2)=x﹣2的根是_____.15.三角形的每條邊的長都是方程的根,則三角形的周長是.16.若關(guān)于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價得分有可能達(dá)到A等嗎?為什么?(3)如果一個同學(xué)綜合評價要達(dá)到A等,他的測試成績至少要多少分?18.(8分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大??;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.19.(8分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標(biāo);(2)當(dāng)△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當(dāng)△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標(biāo).20.(8分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個小孩(假設(shè)生男生女機會均等,且與順序無關(guān)).(1)該家庭生育兩胎,假設(shè)每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設(shè)第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.21.(8分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx22.(10分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M稱為碟頂.由定義知,取AB中點N,連結(jié)MN,MN與AB的關(guān)系是_____.拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對應(yīng)的碟寬AB是_____.拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.23.(12分)如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)24.國家發(fā)改委公布的《商品房銷售明碼標(biāo)價規(guī)定》,從2011年5月1日起商品房銷售實行一套一標(biāo)價.商品房銷售價格明碼標(biāo)價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準(zhǔn)備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房都持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.求平均每次下調(diào)的百分率;某人準(zhǔn)備以開盤均價購買一套100平方米的房子,開發(fā)商還給予以下兩種優(yōu)惠方案發(fā)供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,請問哪種方案更優(yōu)惠?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形2、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、C【解析】分析:細(xì)心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學(xué)生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學(xué)生易將三種視圖混淆而錯誤的選其它選項.4、C【解析】

過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.5、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設(shè)每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。6、C【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.7、C【解析】

根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點睛】本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理、線段垂直平分線定理以及三角形外角性質(zhì),熟練掌握各個性質(zhì)定理是解題關(guān)鍵.8、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數(shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.9、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.10、B【解析】

根據(jù)冪的運算法則及整式的加減運算即可判斷.【詳解】A.=x6,故錯誤;B.,正確;C.·=,故錯誤;D.3+2不能合并,故錯誤,故選B.【點睛】此題主要考查整式的加減及冪的運算,解題的關(guān)鍵是熟知其運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題分析:連結(jié)OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.12、2y(2x+1)(2x﹣1)【解析】

首先提取公因式2y,再利用平方差公式分解因式得出答案.【詳解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案為2y(2x+1)(2x-1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.13、1.【解析】∵ABCD的周長為33,∴2(BC+CD)=33,則BC+CD=2.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=3.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD.∴OE=BC.∴△DOE的周長="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周長為1.14、1或1【解析】

移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可得答案.【詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【點睛】本題考查了解一元二次方程的應(yīng)用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.15、6或2或12【解析】

首先用因式分解法求得方程的根,再根據(jù)三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當(dāng)三角形的三邊是2,2,2時,則周長是6;當(dāng)三角形的三邊是1,1,1時,則周長是12;當(dāng)三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關(guān)系,應(yīng)舍去;當(dāng)三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.16、【解析】當(dāng)k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當(dāng)k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.三、解答題(共8題,共72分)17、(1)孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應(yīng)該至少為1分.【解析】試題分析:(1)分別利用孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設(shè)平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設(shè)孔明同學(xué)測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設(shè)平時成績?yōu)闈M分,即100分,綜合成績?yōu)?00×20%=20,設(shè)測試成績?yōu)閍分,根據(jù)題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應(yīng)該至少為1分.考點:一元一次不等式的應(yīng)用;二元一次方程組的應(yīng)用.18、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB【點睛】考查切線的性質(zhì),圓周角定理,等腰直角三角形的判定與性質(zhì),含角的等腰直角三角形的性質(zhì),三角形的面積公式等,題目比較典型,綜合性比較強,難度適中.19、(1)y=x2﹣x,點D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點的坐標(biāo)為(2,0)或(6,0).【解析】

(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標(biāo);(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時,△AME∽△COD,即|t-4|:4=|t2-t|:,當(dāng)時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應(yīng)的M點的坐標(biāo).【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標(biāo)為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當(dāng)CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當(dāng)時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標(biāo)為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當(dāng)時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標(biāo)為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標(biāo)為(2,0)或(6,0).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和菱形的判定與性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數(shù)學(xué)問題.20、(1)P(兩個小孩都是女孩)=;(2)P(三個小孩中恰好是2女1男)=.【解析】

(1)畫出樹狀圖即可解題,(2)畫出樹狀圖即可解題.【詳解】(1)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有4種等可能結(jié)果,而這兩個小孩恰好都是女孩的有1種可能,∴P(兩個小孩都是女孩)=.(2)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有8種等可能結(jié)果,其中這三個小孩中恰好是2女1男的有3種結(jié)果,∴P(三個小孩中恰好是2女1男)=.【點睛】本題考查了畫樹狀圖求解概率,中等難度,畫出樹狀圖找到所有可能性是解題關(guān)鍵.21、(1)y=﹣2x+1;y=﹣80x【解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標(biāo),再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標(biāo),進而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標(biāo)即可.(3)觀察函數(shù)圖象,當(dāng)函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標(biāo)為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當(dāng)﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當(dāng)x=10時,y=﹣8,∴點E坐標(biāo)為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【點睛】本題考查了應(yīng)用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖像解不等式.22、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(2,0),進而代入求出答案;②根據(jù)y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論