版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市醴陵市第二中學(xué)2023-2024學(xué)年高考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.2332.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.3.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.44.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.105.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.57.已知函數(shù),若關(guān)于的方程有4個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值9.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.10.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.11.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.12.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.14.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.15.展開式中的系數(shù)為_________.(用數(shù)字做答)16.如圖,直線是曲線在處的切線,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.19.(12分)已知直線與橢圓恰有一個公共點(diǎn),與圓相交于兩點(diǎn).(I)求與的關(guān)系式;(II)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱.若當(dāng)時,的面積取到最大值,求橢圓的離心率.20.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點(diǎn),,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).21.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.2、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.3、D【解析】
模擬程序運(yùn)行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時,,此時不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時模擬程序運(yùn)行,觀察變量值的變化,確定程序功能,可得結(jié)論.4、C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對稱,計算得到答案.【詳解】,驗(yàn)證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對稱,圖像共有8個交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問題,意在考查學(xué)生的計算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對稱是解題的關(guān)鍵.5、D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對應(yīng)點(diǎn)即可判斷.【詳解】,故其對應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.6、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.7、C【解析】
求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個不同的實(shí)數(shù)根等價于方程在上有兩個不同的實(shí)數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當(dāng)時,,當(dāng),,且,故方程在上有兩個不同的實(shí)數(shù)根,故,解得.故選:C.【點(diǎn)睛】本題考查確定函數(shù)零點(diǎn)或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點(diǎn)個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點(diǎn)值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點(diǎn)存在性定理判斷函數(shù)在某區(qū)間上有零點(diǎn),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點(diǎn)值符號,進(jìn)而判斷函數(shù)在該區(qū)間上零點(diǎn)的個數(shù).8、B【解析】
判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.9、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.10、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.11、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.12、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)?,所以,因?yàn)?,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對應(yīng)此類問題的解題步驟,以及三角形形狀對應(yīng)的特征.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)二項展開式的通項公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當(dāng)時,,則.故答案為:【點(diǎn)睛】本題考查求二項展開式指定項的系數(shù),是基礎(chǔ)題.14、【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算15、210【解析】
轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點(diǎn)睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、.【解析】
求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因?yàn)?所以.所以,即.因?yàn)?所以,因?yàn)?所以,所以.【點(diǎn)睛】考查不等式的證明,考查不等式的性質(zhì)的應(yīng)用.18、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,即在上增;當(dāng)時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時,,在單調(diào)遞增,所以滿足題意;當(dāng)時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.19、(Ⅰ)(II)【解析】
(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結(jié)果;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,可得的面積是的面積的兩倍,再由當(dāng)時,的面積取到最大值,可得,進(jìn)而可得原點(diǎn)到直線的距離,再由點(diǎn)到直線的距離公式,以及(I)的結(jié)果,即可求解.【詳解】(I)由,得,則化簡整理,得;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,故的面積是的面積的兩倍.所以當(dāng)時,的面積取到最大值,此時,從而原點(diǎn)到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系,以及橢圓的簡單性質(zhì),通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于中檔試題.20、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進(jìn)而得到;(2)設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因?yàn)?,可?又由,,平面,所以平面,因?yàn)槠矫?,所?(2)因?yàn)?,可得,令,,設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點(diǎn)睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進(jìn)行求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.21、(1)最小值為,此時;(2)見解析【解析】
(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運(yùn)用基本不等式構(gòu)造,可得最值;法三:運(yùn)用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點(diǎn)睛】本題考查運(yùn)用基本不等式,柯西不等式,絕對值不等式進(jìn)行不等式的證明和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年商業(yè)綜合體停車場服務(wù)外包及收益分成合同3篇
- 財產(chǎn)保險公司理賠工作總結(jié)
- 2022年扶貧工作計劃
- 2025正規(guī)的民間借款合同范本樣本
- 2024至2030年中國數(shù)字回放錄像機(jī)行業(yè)投資前景及策略咨詢研究報告
- 2025企業(yè)招標(biāo)承包合同
- 2024年中國資料盒市場調(diào)查研究報告
- 2024至2030年中國噴碼設(shè)備行業(yè)投資前景及策略咨詢研究報告
- 中職學(xué)校教師培養(yǎng)與發(fā)展計劃
- 2024年中國直排軟溜冰鞋市場調(diào)查研究報告
- 智能網(wǎng)聯(lián)車路云協(xié)同系統(tǒng)架構(gòu)與關(guān)鍵技術(shù)研究綜述
- 2023流域超標(biāo)準(zhǔn)洪水防御預(yù)案編制導(dǎo)則
- 統(tǒng)編版語文八年級下冊全冊大單元整體教學(xué)設(shè)計表格式教案
- 蒙牛學(xué)生奶培訓(xùn)課件
- 檢驗(yàn)原始記錄培訓(xùn)課件
- 少先隊小提案
- 小學(xué)一年級上冊數(shù)學(xué)口算訓(xùn)練題
- 隧道工程工程施工風(fēng)險辨識清單
- 北京市高二年級上學(xué)期期末考試語文試卷及答案(共五套)
- 傳承紅色基因清明緬懷先烈主題班會課件
- 2024供電所迎新年賀詞
評論
0/150
提交評論