廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷含解析_第1頁
廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷含解析_第2頁
廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷含解析_第3頁
廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷含解析_第4頁
廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市番禺區(qū)禺山中學2024年高考沖刺押題(最后一卷)數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.42.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數(shù)為()A.1 B.2 C.3 D.03.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.54.已知為坐標原點,角的終邊經(jīng)過點且,則()A. B. C. D.5.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.6.已知函數(shù)是上的偶函數(shù),且當時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關系是()A. B.C. D.7.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格8.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里9.已知函數(shù),則()A. B. C. D.10.兩圓和相外切,且,則的最大值為()A. B.9 C. D.111.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.已知,則__________.15.設第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.16.已知函數(shù),則的值為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.20.(12分)已知函數(shù),.(1)當時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.22.(10分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.2、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數(shù)為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.3、D【解析】

根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎題.4、C【解析】

根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數(shù)定義的應用和二倍角的正弦公式,考查計算能力.5、C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.6、D【解析】

利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數(shù)是單調(diào)遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關系,本題屬于中檔題.7、D【解析】

先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.8、A【解析】

先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結(jié)合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.9、A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎題.10、A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數(shù),屬于中檔題.11、A【解析】

先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.12、A【解析】

根據(jù)復合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調(diào)性同增異減,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】

由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域?qū)氖欠忾]區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結(jié)合圖形確定目標函數(shù)最值取法、值域范圍.14、【解析】

首先利用,將其兩邊同時平方,利用同角三角函數(shù)關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,倍角公式,誘導公式,屬于簡單題目.15、【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.16、4【解析】

根據(jù)的正負值,代入對應的函數(shù)解析式求解即可.【詳解】解:.故答案為:.【點睛】本題考查分段函數(shù)函數(shù)值的求解,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18、(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【點睛】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標系,則,,,設平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.20、(1)見解析(2)2【解析】

(1)將代入可得,令,則,設,則轉(zhuǎn)化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數(shù)可得,則,即,再設,利用導函數(shù)求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當時,;當時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調(diào)遞增,即在上恒成立,設,則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當時,,故,單調(diào)遞減,不符合題意;③若,當時,,單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論