版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市羅湖區(qū)2023-2024學年高考臨考沖刺數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.122.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種3.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.85.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)6.已知復數(shù),則()A. B. C. D.7.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.8.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件9.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里10.已知定義在上的可導函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.11.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.12.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量、的夾角為,且,則的最大值是_____.14.在中,若,則的范圍為________.15.近年來,新能源汽車技術不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術作為新能源汽車的核心技術,它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達到2000次的概率為85%,充放電循環(huán)次數(shù)達到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.16.已知,,則與的夾角為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數(shù)的取值范圍.18.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.19.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;(2)當時,設直線與函數(shù)的圖象相交于不同的兩點,,證明:.22.(10分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.2、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.3、A【解析】
根據(jù)向量共線的性質依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.4、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調性,賦值法在抽象函數(shù)求值中的應用,屬于中檔題.5、A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.6、B【解析】
利用復數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數(shù)的除法運算、加法運算,考查復數(shù)的模,屬于基礎題.7、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.8、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.9、B【解析】
人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.10、A【解析】
構造函數(shù),根據(jù)已知條件判斷出的單調性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數(shù)法解不等式,考查利用導數(shù)研究函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.11、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調遞增,當時,;而函數(shù)在上單調遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導數(shù)在判斷函數(shù)單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.12、D【解析】
可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.14、【解析】
借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數(shù)的化簡,重點考查學生的計算能力,難度一般.15、【解析】
記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數(shù)學應用,數(shù)學運算的能力,屬于基礎題.16、【解析】
根據(jù)已知條件,去括號得:,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)利用絕對值的幾何意義,將不等式,轉化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,∴不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.18、(1)證明見解析;(2)1【解析】
(1)由菱形的性質和線面垂直的性質,可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.19、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】
(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據(jù)垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據(jù)垂直關系確定位置,意在考查學生的計算能力和空間想象能力.20、(1).(2)答案見解析【解析】
(1)利用絕對值不等式的性質即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結合即可得證.【詳解】(1),當且僅當時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結論成立的充分條件,完成證明,這就是分析法.21、(1);(2)見解析.【解析】
(1)將所求問題轉化為在上有解,進一步轉化為函數(shù)最值問題;(2)將所證不等式轉化為,進一步轉化為,然后再通過構造加以證明即可.【詳解】(1),根據(jù)題意,在內存在單調減區(qū)間,則不等式在上有解,由得,設,則,當且僅當時,等號成立,所以當時,,所以存在,使得成立,所以的取值范圍為。(2)當時,,則,從而所證不等式轉化為,不妨設,則不等式轉化為,即,即,令,則不等式轉化為,因為,則,從而不等式化為,設,則,所以在上單調遞增,所以即不等式成立,故原不等式成立.【點睛】本題考查了利用導數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版煤炭進出口居間服務不可撤銷合同4篇
- 2024預付款擔保形式創(chuàng)新與合同起草策略合同9篇
- 二零二五年新材料存貨質押融資服務合同3篇
- 年度胃動力藥市場分析及競爭策略分析報告
- 2024-2025學年高中英語Unit3AtasteofEnglishhumourSectionⅤGuidedWriting如何寫幽默類故事性的記敘文教師用書教案新人教版必修4
- 二零二五年度農(nóng)業(yè)科技研發(fā)成果轉化合同范本集3篇
- 2025年度碼頭貨物裝卸機械租賃合同范本3篇
- 2024碎石原料生產(chǎn)設備采購合同
- 2025年度鋁型材電商平臺合作服務合同4篇
- 2024版招生合作服務協(xié)議
- 醫(yī)院感染風險評估表(適用于病房、換藥室、治療室、注射室)
- 2024生態(tài)環(huán)境相關法律法規(guī)考試試題
- 兩辦意見八硬措施煤礦安全生產(chǎn)條例宣貫學習課件
- 廣西失敗企業(yè)案例分析報告
- 湖南建設工程施工階段監(jiān)理服務費計費規(guī)則
- 人教版高中數(shù)學必修二《第九章 統(tǒng)計》同步練習及答案解析
- 兒科護理安全警示教育課件
- GB/T 16886.23-2023醫(yī)療器械生物學評價第23部分:刺激試驗
- 三年級下冊口算天天100題
- 洪恩識字識字卡(001-100)可直接打印剪裁
- 國家中英文名稱及代碼縮寫(三位)
評論
0/150
提交評論