廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省惠州一中2024屆高考數(shù)學(xué)全真模擬密押卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]2.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數(shù)為()A.1 B.2 C.3 D.43.曲線在點處的切線方程為,則()A. B. C.4 D.84.設(shè)復(fù)數(shù),則=()A.1 B. C. D.5.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.26.如圖所示,三國時代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.647.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.8.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則9.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.10.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或11.設(shè)是虛數(shù)單位,則()A. B. C. D.12.已知雙曲線()的漸近線方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.14.在平面直角坐標(biāo)系中,已知圓及點,設(shè)點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.15.已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為____,的最大值為_________16.雙曲線的焦點坐標(biāo)是_______________,漸近線方程是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標(biāo).18.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.19.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.20.(12分)在平面直角坐標(biāo)系中,設(shè),過點的直線與圓相切,且與拋物線相交于兩點.(1)當(dāng)在區(qū)間上變動時,求中點的軌跡;(2)設(shè)拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.21.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.22.(10分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設(shè)角,周長為y,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.2、B【解析】

設(shè)出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標(biāo)系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設(shè)棱長為:2,對于①連結(jié),則,即與不垂直,又,①不正確;對于②,連結(jié),,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標(biāo)原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標(biāo)系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點睛】本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線與平面垂直,直線與直線的位置關(guān)系的應(yīng)用,考查空間想象能力以及邏輯推理能力.3、B【解析】

求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.4、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.5、C【解析】

由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.6、B【解析】

設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。7、C【解析】

如圖所示,當(dāng)點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.8、B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項判斷即可得出結(jié)果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于常考題型.9、C【解析】

設(shè)為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【詳解】設(shè)分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.10、C【解析】

簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.11、A【解析】

利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.12、A【解析】

根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】

根據(jù)復(fù)數(shù)運算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運算法則.14、【解析】

由角平分線成比例定理推理可得,進(jìn)而設(shè)點表示向量構(gòu)建方程組表示點P坐標(biāo),代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設(shè)點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.15、811【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)椋@然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.16、【解析】

通過雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標(biāo)是,漸近線方程為:.故答案為:;.【點睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運算能力,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標(biāo)為.【點睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計算能力,是一道容易題.18、(1)(2)【解析】

(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.19、(I)|FP|=2-32x【解析】

(I)直接利用兩點間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20、(1).(2)的周長為,時,的周長為【解析】

(1)設(shè)的方程為,根據(jù)題意由點到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設(shè)?坐標(biāo)分別是?,利用韋達(dá)定理以及中點坐標(biāo)公式消參即可求解.(2)根據(jù)拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設(shè)的方程為于是聯(lián)立設(shè)?坐標(biāo)分別是?則設(shè)的中點坐標(biāo)為,則消去參數(shù)得:(2)設(shè),,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【點睛】本題考查了動點的軌跡方程、直線與拋物線的位置關(guān)系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.21、(1);(2)證明見詳解,【解析】

(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論