版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省金華市六校聯(lián)誼2024年中考四模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.某城市幾條道路的位置關(guān)系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°2.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時(shí)后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時(shí)間為t(小時(shí)),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時(shí)間為1小時(shí);③兩車在途中第二次相遇時(shí)t的值為5.25;④當(dāng)t=3時(shí),兩車相距40千米,其中不正確的個(gè)數(shù)為()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)3.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.4.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.5.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.6.如圖,PA、PB切⊙O于A、B兩點(diǎn),AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°7.如圖1,在矩形ABCD中,動點(diǎn)E從A出發(fā),沿A→B→C方向運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動,過點(diǎn)E作EF⊥AE交CD于點(diǎn)F,設(shè)點(diǎn)E運(yùn)動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時(shí),點(diǎn)E的運(yùn)動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯(cuò) C.①對②錯(cuò) D.①錯(cuò)②對8.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點(diǎn)坐標(biāo)為 B.圖像的對稱軸在軸的右側(cè)C.當(dāng)時(shí),的值隨值的增大而減小 D.的最小值為-39.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,10.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數(shù)y=x2﹣4x+m的圖象上的三點(diǎn),則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y211.將分別標(biāo)有“孔”“孟”“之”“鄉(xiāng)”漢字的四個(gè)小球裝在一個(gè)不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機(jī)摸出一球,不放回;再隨機(jī)摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.12.下列運(yùn)算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4 C. D.(a2b)3=a5b3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在平面直角坐標(biāo)系xOy中,點(diǎn)A(4,3)為⊙O上一點(diǎn),B為⊙O內(nèi)一點(diǎn),請寫出一個(gè)符合條件要求的點(diǎn)B的坐標(biāo)______.14.已知函數(shù)y=-1,給出一下結(jié)論:①y的值隨x的增大而減?、诖撕瘮?shù)的圖形與x軸的交點(diǎn)為(1,0)③當(dāng)x>0時(shí),y的值隨x的增大而越來越接近-1④當(dāng)x≤時(shí),y的取值范圍是y≥1以上結(jié)論正確的是_________(填序號)15.如圖,已知,D、E分別是邊BA、CA延長線上的點(diǎn),且如果,,那么AE的長為______.16.如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.17.一個(gè)不透明的口袋中有2個(gè)紅球,1個(gè)黃球,1個(gè)白球,每個(gè)球除顏色不同外其余均相同.小溪同學(xué)從口袋中隨機(jī)取出兩個(gè)小球,則小溪同學(xué)取出的是一個(gè)紅球、一個(gè)白球的概率為_____.18.若反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個(gè)交點(diǎn)為(m,﹣4),則這個(gè)反比例函數(shù)的表達(dá)式為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點(diǎn)D,點(diǎn)E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.20.(6分)如圖,直線y=﹣x+3分別與x軸、y交于點(diǎn)B、C;拋物線y=x2+bx+c經(jīng)過點(diǎn)B、C,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A(點(diǎn)A在點(diǎn)B的左側(cè)),對稱軸為l1,頂點(diǎn)為D.(1)求拋物線y=x2+bx+c的解析式.(2)點(diǎn)M(1,m)為y軸上一動點(diǎn),過點(diǎn)M作直線l2平行于x軸,與拋物線交于點(diǎn)P(x1,y1),Q(x2,y2),與直線BC交于點(diǎn)N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),求m的值.21.(6分)如圖,在平面直角坐標(biāo)系中,直線:與軸,軸分別交于,兩點(diǎn),且點(diǎn),點(diǎn)在軸正半軸上運(yùn)動,過點(diǎn)作平行于軸的直線.(1)求的值和點(diǎn)的坐標(biāo);(2)當(dāng)時(shí),直線與直線交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),求反比例函數(shù)的解析式;(3)當(dāng)時(shí),若直線與直線和(2)反比例函數(shù)的圖象分別交于點(diǎn),,當(dāng)間距離大于等于2時(shí),求的取值范圍.22.(8分)如圖,已知拋物線過點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點(diǎn)M是拋物線AC段上的一個(gè)動點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo);(3)在圖乙中,點(diǎn)C和點(diǎn)C1關(guān)于拋物線的對稱軸對稱,點(diǎn)P在拋物線上,且∠PAB=∠CAC1,求點(diǎn)P的橫坐標(biāo).23.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是多少?24.(10分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K,求的值;設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.25.(10分)閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).26.(12分)如圖,M是平行四邊形ABCD的對角線上的一點(diǎn),射線AM與BC交于點(diǎn)F,與DC的延長線交于點(diǎn)H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.27.(12分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點(diǎn)睛:本題考查了等腰三角形的性質(zhì),平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.2、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時(shí)間為1小時(shí);故②正確,③如圖:∵甲車維修的時(shí)間是1小時(shí),∴B(4,120).∵乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時(shí)間為:240÷80=3,∴F(8,0).設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當(dāng)y1=y2時(shí),80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時(shí)t的值為5.2小時(shí),故弄③正確,④當(dāng)t=3時(shí),甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.3、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點(diǎn):簡單組合體的三視圖.4、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯(cuò)誤;C.是中心對稱圖形不是軸對稱圖形,錯(cuò)誤;D.是軸對稱圖形也是中心對稱圖形,錯(cuò)誤,故選A.【點(diǎn)睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關(guān)鍵.5、D【解析】A選項(xiàng),在△OAB∽△OCD中,OB和CD不是對應(yīng)邊,因此它們的比值不一定等于相似比,所以A選項(xiàng)不一定成立;B選項(xiàng),在△OAB∽△OCD中,∠A和∠C是對應(yīng)角,因此,所以B選項(xiàng)不成立;C選項(xiàng),因?yàn)橄嗨迫切蔚拿娣e比等于相似比的平方,所以C選項(xiàng)不成立;D選項(xiàng),因?yàn)橄嗨迫切蔚闹荛L比等于相似比,所以D選項(xiàng)一定成立.故選D.6、C【解析】
連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因?yàn)槭菆A的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點(diǎn)睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。7、A【解析】
由已知,AB=a,AB+BC=5,當(dāng)E在BC上時(shí),如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當(dāng)E在AB上時(shí),y=時(shí),x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當(dāng)E在BC上時(shí),如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當(dāng)x=時(shí),﹣,解得a1=3,a2=(舍去),∴y=﹣,當(dāng)y=時(shí),=﹣,解得x1=,x2=,當(dāng)E在AB上時(shí),y=時(shí),x=3﹣=,故①②正確,故選A.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,相似三角形的判定與性質(zhì),綜合性較強(qiáng),弄清題意,正確畫出符合條件的圖形,熟練運(yùn)用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.8、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個(gè)選項(xiàng)中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時(shí),y=-1,故選項(xiàng)A錯(cuò)誤,該函數(shù)的對稱軸是直線x=-1,故選項(xiàng)B錯(cuò)誤,當(dāng)x<-1時(shí),y隨x的增大而減小,故選項(xiàng)C錯(cuò)誤,當(dāng)x=-1時(shí),y取得最小值,此時(shí)y=-3,故選項(xiàng)D正確,故選D.點(diǎn)睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.9、A【解析】
首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點(diǎn)O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點(diǎn)睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.10、B【解析】
根據(jù)函數(shù)解析式的特點(diǎn),其對稱軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對稱軸左側(cè),圖象開口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【詳解】拋物線y=x2﹣4x+m的對稱軸為x=2,當(dāng)x<2時(shí),y隨著x的增大而減小,因?yàn)?4<-3<1<2,所以y3<y2<y1,故選B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握二次函數(shù)的增減性是解題的關(guān)鍵.11、B【解析】
根據(jù)簡單概率的計(jì)算公式即可得解.【詳解】一共四個(gè)小球,隨機(jī)摸出一球,不放回;再隨機(jī)摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點(diǎn):簡單概率計(jì)算.12、B【解析】
根據(jù)同底數(shù)冪的除法,合并同類項(xiàng),積的乘方的運(yùn)算法則進(jìn)行逐一運(yùn)算即可.【詳解】解:A、5ab﹣=4ab,此選項(xiàng)運(yùn)算錯(cuò)誤,B、a6÷a2=a4,此選項(xiàng)運(yùn)算正確,C、,選項(xiàng)運(yùn)算錯(cuò)誤,D、(a2b)3=a6b3,此選項(xiàng)運(yùn)算錯(cuò)誤,故選B.【點(diǎn)睛】此題考查了同底數(shù)冪的除法,合并同類項(xiàng),積的乘方,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(2,2).【解析】
連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點(diǎn)與圓的位置關(guān)系可得一個(gè)符合要求的點(diǎn)B的坐標(biāo).【詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點(diǎn),∴符合要求的點(diǎn)B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).【點(diǎn)睛】考查了點(diǎn)與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.14、②③【解析】(1)因?yàn)楹瘮?shù)的圖象有兩個(gè)分支,在每個(gè)分支上y隨x的增大而減小,所以結(jié)論①錯(cuò)誤;(2)由解得:,∴的圖象與x軸的交點(diǎn)為(1,0),故②中結(jié)論正確;(3)由可知當(dāng)x>0時(shí),y的值隨x的增大而越來越接近-1,故③中結(jié)論正確;(4)因?yàn)樵谥校?dāng)時(shí),,故④中結(jié)論錯(cuò)誤;綜上所述,正確的結(jié)論是②③.故答案為:②③.15、【解析】
由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計(jì)算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.16、1【解析】
根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時(shí),OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.17、【解析】
先畫樹狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機(jī)摸出2個(gè)球,摸到的兩個(gè)球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:根據(jù)題意畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機(jī)摸出2個(gè)球,摸到的一個(gè)紅球、一個(gè)白球的結(jié)果數(shù)為4,所以從口袋中隨機(jī)摸出2個(gè)球,則摸到的兩個(gè)球是一白一黃的概率為.故答案為.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、y=﹣.【解析】
把交點(diǎn)坐標(biāo)代入兩個(gè)解析式組成方程組,解方程組求得k,即可求得反比例函數(shù)的解析式.【詳解】解:∵反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個(gè)交點(diǎn)為(m,﹣4),∴,解得k=﹣5,∴反比例函數(shù)的表達(dá)式為y=﹣,故答案為y=﹣.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,根據(jù)圖象上點(diǎn)的坐標(biāo)特征得出方程組是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質(zhì)可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點(diǎn):圓周角定理;全等三角形的判定及性質(zhì);切線的判定定理20、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】
(2)由直線y=﹣x+3分別與x軸、y交于點(diǎn)B、C求得點(diǎn)B、C的坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點(diǎn)坐標(biāo)為D(2,﹣2),當(dāng)直線l2經(jīng)過點(diǎn)D時(shí)求得m=﹣2;當(dāng)直線l2經(jīng)過點(diǎn)C時(shí)求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間和當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點(diǎn)B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點(diǎn)為D(2,﹣2),當(dāng)直線l2經(jīng)過點(diǎn)D時(shí),m=﹣2;當(dāng)直線l2經(jīng)過點(diǎn)C時(shí),m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點(diǎn)P、Q關(guān)于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點(diǎn)Q(x2,y2)的坐標(biāo)代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負(fù)值已舍去),∴m=()2﹣4×+3=如圖②,當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PN=NQ.由上可得點(diǎn)P、Q關(guān)于直線l2對稱,∴點(diǎn)N在拋物線的對稱軸l2:x=2,又點(diǎn)N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點(diǎn)睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點(diǎn)、線段的中點(diǎn)及分類討論思想等知識.在(2)中注意待定系數(shù)法的應(yīng)用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度較大.21、(1),;(2);的取值范圍是:.【解析】
(1)把代入得出的值,進(jìn)而得出點(diǎn)坐標(biāo);(2)當(dāng)時(shí),將代入,進(jìn)而得出的值,求出點(diǎn)坐標(biāo)得出反比例函數(shù)的解析式;(3)可得,當(dāng)向下運(yùn)動但是不超過軸時(shí),符合要求,進(jìn)而得出的取值范圍.【詳解】解:(1)∵直線:經(jīng)過點(diǎn),∴,∴,∴;(2)當(dāng)時(shí),將代入,得,,∴代入得,,∴;(3)當(dāng)時(shí),即,而,如圖,,當(dāng)向下運(yùn)動但是不超過軸時(shí),符合要求,∴的取值范圍是:.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn),當(dāng)有兩個(gè)函數(shù)的時(shí)候,著重使用一次函數(shù),體現(xiàn)了方程思想,綜合性較強(qiáng).22、(1)y=12x2-x-4(2)點(diǎn)M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-4),然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;
(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最?。甋四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點(diǎn)Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,1由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時(shí),四邊形OAMC面積最大,此時(shí)陰影部分面積最小,所以點(diǎn)M的坐標(biāo)為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點(diǎn)Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點(diǎn)P的橫坐標(biāo)為-83或-4【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)綜合運(yùn)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.23、R=125或R=【解析】
解:當(dāng)圓與斜邊相切時(shí),則R=125,即圓與斜邊有且只有一個(gè)公共點(diǎn),當(dāng)R=12考點(diǎn):圓與直線的位置關(guān)系.24、(1);(2)1.【解析】
(1)根據(jù)相似三角形的對應(yīng)線段(對應(yīng)中線、對應(yīng)角平分線、對應(yīng)邊上的高)的比也等于相似比進(jìn)行計(jì)算即可;(2)根據(jù)EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據(jù)S=x(12﹣x)=﹣(x﹣6)2+1,可得當(dāng)x=6時(shí),S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當(dāng)x=6時(shí),S有最大值為1.【點(diǎn)睛】本題主要考查了相似三角形的判定與性質(zhì)的綜合應(yīng)用,解題時(shí)注意:確定一個(gè)二次函數(shù)的最值,首先看自變量的取值范圍,當(dāng)自變量取全體實(shí)數(shù)時(shí),其最值為拋物線頂點(diǎn)坐標(biāo)的縱坐標(biāo).25、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021屆湖北省孝感市普通高中高一下學(xué)期期末考試數(shù)學(xué)試題
- 2025年建筑施工《春節(jié)節(jié)后復(fù)工復(fù)產(chǎn)》工作實(shí)施方案 合計(jì)3份
- 小學(xué)一年級20以內(nèi)數(shù)學(xué)口算練習(xí)題大全
- 學(xué)校聘用教師勞動合同書5篇
- 《肌組織課件》課件
- 你聽“你聽多美”命題作文寫作指導(dǎo)與精彩例文
- 湖南高考語文試題分析報(bào)告
- 《勞動定額知識》課件
- 商超連鎖店話務(wù)員工作總結(jié)
- 稅務(wù)籌劃與規(guī)劃實(shí)踐經(jīng)驗(yàn)分享
- (八省聯(lián)考)2025年高考綜合改革適應(yīng)性演練 語文試卷(含答案解析)
- 數(shù)字媒體技術(shù)應(yīng)用基礎(chǔ)知識單選題及答案解析
- 2025年高考?xì)v史復(fù)習(xí)之小題狂練300題(選擇題):世界多極化與經(jīng)濟(jì)全球化(20題)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之1:0 引言(雷澤佳編制-2025B0)
- 2024版環(huán)衛(wèi)清潔班車租賃服務(wù)協(xié)議3篇
- 生產(chǎn)安全事故事件管理知識培訓(xùn)課件
- 項(xiàng)目施工單位與當(dāng)?shù)卣按迕竦膮f(xié)調(diào)措施
- 藥劑科工作人員的專業(yè)提升計(jì)劃
- 2024-2025學(xué)年度第一學(xué)期二年級語文寒假作業(yè)第二十一天
- 浙江省寧波市寧??h2023-2024學(xué)年三年級上學(xué)期語文期末試卷
- 貸款用設(shè)備購銷合同范例
評論
0/150
提交評論