江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省贛州市十五縣市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時,平面 D.當(dāng)m變化時,直線l的位置不變3.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.4.已知焦點為的拋物線的準(zhǔn)線與軸交于點,點在拋物線上,則當(dāng)取得最大值時,直線的方程為()A.或 B.或 C.或 D.5.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.6.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}7.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤9.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.510.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.111.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.12.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓內(nèi)一定點,經(jīng)過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.14.已知數(shù)列是等比數(shù)列,,則__________.15.設(shè)實數(shù)x,y滿足,則點表示的區(qū)域面積為______.16.已知向量,且,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標(biāo);(2)若點為曲線上的動點,為線段的中點,求的最大值.18.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.19.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標(biāo).20.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.21.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.22.(10分)的內(nèi)角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎(chǔ)題.2、C【解析】

根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.3、D【解析】

首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.4、A【解析】

過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.5、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.6、B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.7、C【解析】

先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【詳解】直線,,的充要條件是,當(dāng)a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.8、A【解析】

利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當(dāng)時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計算能力.9、D【解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.10、C【解析】

利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.11、B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.12、C【解析】

設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設(shè)而不求法來解答,考查計算能力,屬于中等題.14、【解析】

根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.15、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標(biāo),利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.16、【解析】

由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標(biāo)是,從而,點的極坐標(biāo)是.(2)由(1)可知,點的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【點睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.18、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.19、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時【解析】

(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點的坐標(biāo),利用點到直線的距離公式求得最小值的表達式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時點的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點的直角坐標(biāo)為,因為是直線,所以的最小值即為到的距離,因為.當(dāng)且僅當(dāng)時,取得最小值為,此時的直角坐標(biāo)為即.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線參數(shù)方程求解點到直線距離的最小值問題,屬于中檔題.20、(1)證明見詳解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當(dāng)時所以當(dāng)且僅當(dāng)即時等號成立因為存在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論