




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省武威市六中2024屆高三下學期聯(lián)考數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B. C. D.2.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.843.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.4.已知函數(shù)滿足,當時,,則()A.或 B.或C.或 D.或5.函數(shù)的值域為()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當時,在上的最大值為1.A.1 B.2 C.3 D.48.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-59.已知復數(shù)滿足,其中是虛數(shù)單位,則復數(shù)在復平面中對應的點到原點的距離為()A. B. C. D.10.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.11.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.1212.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則與的夾角為.14.在平面直角坐標系中,若雙曲線經(jīng)過點(3,4),則該雙曲線的準線方程為_____.15.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.16.割圓術(shù)是估算圓周率的科學方法,由三國時期數(shù)學家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點,則該點取自其內(nèi)接正十二邊形內(nèi)部的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.18.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。19.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.20.(12分)已知函數(shù),其導函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.21.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.2、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.3、D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.4、C【解析】
簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.5、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.6、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.7、C【解析】
逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結(jié)論錯誤.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.8、C【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎(chǔ)題.9、B【解析】
利用復數(shù)的除法運算化簡z,復數(shù)在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數(shù)在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數(shù)的除法運算,模長公式和幾何意義,考查了學生概念理解,數(shù)學運算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.10、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.11、C【解析】
分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.12、A【解析】
設(shè),由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設(shè),由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于常考題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)已知條件,去括號得:,14、【解析】
代入求解得,再求準線方程即可.【詳解】解:雙曲線經(jīng)過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎(chǔ)題.15、22【解析】
設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉(zhuǎn)化能力.16、【解析】
求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點取自其內(nèi)接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關(guān)系式,利用點到直線的距離公式即可得到,.當時,設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質(zhì),結(jié)合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個公共點知,,化簡得:.
設(shè),,當時,設(shè)直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.
所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.18、(1)l的普通方程;C的直角坐標方程;(2).【解析】
(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數(shù)即可得到直線的直角坐標方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.19、(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)求出的導數(shù),根據(jù)導函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當時,;當時,;當時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.21、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第三單元 項目二 探索2 互聯(lián)網(wǎng)應用中數(shù)據(jù)的組織 教學設(shè)計 2024-2025學年蘇科版(2023)初中信息技術(shù)七年級上冊
- 第二單元課題1 我們周圍的空氣 教學設(shè)計-2024-2025學年九年級化學人教版(2024)上冊
- 第五單元任務(wù)三《演出與評議》教學設(shè)計-2023-2024學年統(tǒng)編版語文九年級下冊
- 第二單元寫作《審題立意》教學設(shè)計 2023-2024學年統(tǒng)編版語文九年級下冊
- 2024內(nèi)蒙古鐵路投資集團有限責任公司及其所屬公司公開招聘5人筆試參考題庫附帶答案詳解
- 2025至2030年中國橡膠后處理包裝線數(shù)據(jù)監(jiān)測研究報告
- 第二單元圖像處理的基本方法第8課一、《認識顏色通道》教學設(shè)計 2023-2024學年人教版初中信息技術(shù)七年級下冊
- 江西省部分學校2023-2024學年高二上學期12月月考地理試題(解析版)
- 湖南省邵陽市2022-2023學年高二上學期12月月考地理試題(解析版)
- 第二單元第三節(jié)《圖片是信息好助手-插入圖形圖像》教學設(shè)計 2023-2024學年西交大版(2014)初中信息技術(shù)七年級下冊
- 認識頸動脈斑塊護理課件
- 家庭教育學整套課件
- 智慧樹知到《醫(yī)學統(tǒng)計學》章節(jié)測試答案
- 木工安全教育培訓試題(附答案)
- 非結(jié)構(gòu)化數(shù)據(jù)分析與應用 課件 第1章 非結(jié)構(gòu)數(shù)據(jù)分析概述
- 《應收應付模塊》課件
- 2024年新年新氣象
- 2024年度天津市高校大學《輔導員》招聘試題(含答案)
- 工廠布局和物料路徑(英文版)
- 某建設(shè)總工程CI形象策劃方案
- -6-35kV中壓交聯(lián)電纜產(chǎn)品基礎(chǔ)知識培訓
評論
0/150
提交評論