![2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M08/37/21/wKhkGWZCoyCAPm3zAAHGgsn9gQk545.jpg)
![2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M08/37/21/wKhkGWZCoyCAPm3zAAHGgsn9gQk5452.jpg)
![2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M08/37/21/wKhkGWZCoyCAPm3zAAHGgsn9gQk5453.jpg)
![2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M08/37/21/wKhkGWZCoyCAPm3zAAHGgsn9gQk5454.jpg)
![2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M08/37/21/wKhkGWZCoyCAPm3zAAHGgsn9gQk5455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省沅江三中高三最后一卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.53.已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為()A. B.C. D.4.已知集合,,,則集合()A. B. C. D.5.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.6.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.8.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.9.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.10.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.511.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.9612.下列判斷錯誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項分布:,則D.是的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.14.己知函數(shù),若曲線在處的切線與直線平行,則__________.15.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關(guān)于軸對稱,則的最小值為________________.16.已知非零向量的夾角為,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),當(dāng)時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.18.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.19.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.20.(12分)在直角坐標(biāo)系中,曲線的標(biāo)準(zhǔn)方程為.以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)若點在曲線上,點在直線上,求的最小值.21.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當(dāng)時,直線過定點.22.(10分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.2、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、D【解析】
當(dāng)時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,,故,,,,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.4、D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.5、C【解析】
由于中正項與負(fù)項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.6、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.7、D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.8、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當(dāng)時,,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.9、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.10、C【解析】
由,再運(yùn)用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.11、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時,共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎(chǔ)題.12、D【解析】
根據(jù)正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,依次對四個選項加以分析判斷,進(jìn)而可求解.【詳解】對于選項,若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當(dāng)時一定有,充分性成立,而當(dāng)時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機(jī)變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當(dāng)時有,當(dāng)時,不成立,故充分性不成立;若,僅當(dāng)時有,當(dāng)時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質(zhì),屬于中檔題.14、【解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎(chǔ)題.16、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】
(1)由題意得到關(guān)于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時,函數(shù)取得極小值,極小值為.當(dāng)時,有極大值3.【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)①證明見解析;②證明見解析【解析】
(1)解方程即可;(2)①設(shè)直線,,,將點的坐標(biāo)用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標(biāo)準(zhǔn)方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標(biāo)準(zhǔn)方程、直線與橢圓位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.19、(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達(dá)式,即可得出數(shù)列的通項公式,并設(shè)數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當(dāng)時,,當(dāng)時,.也適合上式,所以,.設(shè)數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設(shè)數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應(yīng)用,考查計算能力,屬于中等題.20、(1)(2)【解析】
(1)直接利用極坐標(biāo)公式計算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因為,所以,因為所以直線的直角坐標(biāo)方程為.(2)由題意可設(shè),則點到直線的距離.因為,所以,因為,故的最小值為.【點睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.21、(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過定點的坐標(biāo).【詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點,聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代科技在中藥植物油提取中的綠色環(huán)保策略
- 生活用紙設(shè)計新趨勢創(chuàng)新驅(qū)動的消費(fèi)者體驗升級
- 生態(tài)保護(hù)與零碳公園規(guī)劃的融合實踐
- 國慶節(jié)活動方案活動內(nèi)容
- 現(xiàn)代服務(wù)業(yè)的綠色發(fā)展路徑探索
- 小學(xué)勞動教育考核方案
- 2024年五年級英語下冊 Unit 7 Chinese festivals第6課時說課稿 譯林牛津版
- 2024年秋七年級歷史上冊 第14課 溝通中外文明的“絲綢之路”說課稿 新人教版
- Unit 3 My friends Read and write(說課稿)-2024-2025學(xué)年人教PEP版英語四年級上冊
- 3 我不拖拉 第一課時(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治一年級下冊
- 健康管理-理論知識復(fù)習(xí)測試卷含答案
- 成人腦室外引流護(hù)理-中華護(hù)理學(xué)會團(tuán)體 標(biāo)準(zhǔn)
- JGJ106-建筑基樁檢測技術(shù)規(guī)范
- 高技能公共實訓(xùn)基地建設(shè)方案
- 市第一人民醫(yī)院“十四五”發(fā)展規(guī)劃(2020-2025)
- 2024年湖北孝達(dá)交通投資有限公司招聘筆試沖刺題(帶答案解析)
- 四年級上冊豎式計算100題及答案
- 小學(xué)英語跨學(xué)科案例設(shè)計
- 初中作業(yè)設(shè)計教師培訓(xùn)
- JTGT F20-2015 公路路面基層施工技術(shù)細(xì)則
- 高考滿分作文常見結(jié)構(gòu)
評論
0/150
提交評論