版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MasterPlanPart3
SustainableEnergyforAllofEarth
MasterPlanPart3–SustainableEnergyforAllofEarth
TableofContents
ExecutiveSummary
03
TheCurrentEnergyEconomyisWasteful
04
ThePlantoEliminateFossilFuels
05
1.RepowertheExistingGridwithRenewables
05
2.SwitchtoElectricVehicles
05
3.SwitchtoHeatPumpsinResidential,Business&Industry
07
4.ElectrifyHighTemperatureHeatDeliveryandHydrogen
09
5.SustainablyFuelPlanes&Boats
12
6.ManufacturetheSustainableEnergyEconomy
12
ModelingTheFullySustainableEnergyEconomy
13
?EnergyStorageTechnologiesEvaluated
18
?GenerationTechnologiesEvaluated
19
ModelResults
20
?USOnlyModelResults–MeetingNewElectrificationDemand
20
?WorldModelResults–MeetingNewElectrificationDemand
21
?BatteriesforTransportation
22
?Vehicles
22
?ShipsandPlanes
23
?WorldModelResults–Electrification&BatteriesforTransportation
24
InvestmentRequired
26
LandAreaRequired
30
MaterialsRequired
31
Conclusion
37
Appendix
38
?Appendix:Generationandstorageallocationtoend-uses
38
?Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity
39
PublishedonApril5,2023
Acknowledgements
TeslaContributors
TeslaAdvisors
Weappreciatethemanypriorstudiesthathavepushedthetopicof
FelixMaire
DrewBaglino
asustainableenergyeconomyforward,theworkoftheInternational
MatthewFox
RohanMa
EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),
MarkSimons
VineetMehta
U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom
TurnerCaldwell
variousnon-Teslaaffiliatedadvisors.
AlexYoo
EliahGilfenbaumAndrewUlvestad
02MasterPlanPart3–SustainableEnergyforAllofEarthT
ElectricitySupply
Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly
electricitydemand.
MaterialFeasibility&Investment
Determinethefeasibilityof
materialneedsfortheelectric
economyandmanufacturing
investmentnecessarytoenableit.
ExecutiveSummary
OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand
calculationsbehindthatproposal.Inputandconversationarewelcome.
Theanalysishasthreemaincomponents:
ElectricityDemand
Forecasttheelectricitydemandofafullyelectrifiedeconomy
thatmeetsglobalenergyneedswithoutfossilfuels.
Figure1:Processoverview
Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.
240TWh
Storage
0.21%
LandAreaRequired
30TW
RenewablePower
10%
2022WorldGDP
1/2
TheEnergyRequired
$10T
ManufacturingInvestment
ZERO
InsurmountableResourceChallenges
Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3
03MasterPlanPart3–SustainableEnergyforAllofEarth
TheCurrentEnergyEconomyisWasteful
AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year
1
ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.
Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply
2
,
3
.
Today’sEnergyEconomy(PWh/year)
Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis
aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.
bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.
04MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some
industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)
Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.
ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor
basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa
significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.
Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and
considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.
01RepowertheExistingGridwithRenewables
TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA
4
.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby
sustainablegenerationandstorage.
Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead
renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.
02SwitchtoElectricVehicles
Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain
efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.
VehicleClass
ICEVehicleAvg
5
ElectricVehicles
EfficiencyRatio
PassengerCar
24.2MPG
115MPGe(292Wh.mi)e
4.8X
LightTruck/Van
17.5MPG
75MPGe(450Wh.mi)f
4.3X
Class8Truck
5.3MPG(diesel)
22MPGe(1.7kWh.mi)f
4.2X
Table1:ElectricvsInternalCombustionVehicleEfficiency
cUShourlytimeseriesdatausedasmodelinputsareavailableat
/opendata/browser/fordownload
.
dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX
fTesla’sinternalestimatebasedonindustryknowledge
05MasterPlanPart3–SustainableEnergyforAllofEarth
Consumption[Wh/mi]
ThePlantoEliminateFossilFuels
Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG
6
,7
,or3.9xlower,
andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).
1200
driveconsumptionupstreamlosses
1000
800
600
400
200
0
ToyotaCorollaModel3
Figure4:ComparisonTeslaModel3vs.ToyotaCorolla
Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)
8
.Tesla’shourby
hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy
conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.
Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.
06MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
03SwitchtoHeatPumpsinResidential,Business&Industry
Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant
9
.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand
commercialbuildings,inadditiontomanyindustrialprocesses.
Air
Water
Ground
WasteHeat
HeatSource
Evaporation
ExpansionCompression
Condensation
HeatSink
Air
Water
Steam
HeatedMaterial
Figure5:HowHeatPumpsWork
10
Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday
11
.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency
(AFUE)of~90%
12
.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).
07MasterPlanPart3–SustainableEnergyforAllofEarthT
InputEnergy/HeatDelivered
PercentofAverageLoad
ThePlantoEliminateFossilFuels
1.4
energyconsumptionupstreamlosses
1.2
1.0
0.8
0.6
0.4
0.2
0.0
GasFurnaceHeatPump
Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace
ResidentialandCommercialSectors
TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region
8
.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline
electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing
heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin
morning&evening.
Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.
140
Summer
Winter
130
120
110
100
90
80
70
05101520
TimeofDay[hr]
Figure7:Residential&commercialheating&coolingloadfactorvstimeofday
08MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
IndustrialSector
Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains
offeredbyheatpumps
13
,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature
rangeareused:
Temperature/Application
COP
0-60CHeatPump
4.0
60-100CHeatPump
3.0
100-200CHeatPump
1.5
Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature
Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2
14
,15
,16
.
TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region
8
.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy
16
.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.
Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.
04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction
ElectrifyHighHeatIndustrialProcesses
Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.
Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor
bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)
17
,18
.
09MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Identifytheoptimalthermalstoragemediabytemperature/application
Charging=
heatingthermalstoragemediawithelectricity,steam,hotair,etc
ThermalBattery
Energy
=massthermal_battery
*heatcapacity*?T
Discharging=
coolingthermal
storagemediaby
heatingsomethingelse
Figure8:ThermalStorageOverview
DeliveringHeattoHighTemperatureProcesses
HotFluidsforDeliveryProcess
Steam
MoltenSalt(upto550C)
HotAir(upto2000+C)
FluidstobeHeated
Water
MoltenSalt
Air
WaterEvaporating
MoltenSaltHeating
AirHeating
Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids
RadiantHeatDirectlytoProduct
Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating
Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea
similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.
Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip
thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat
severalmaterialsarecandidatesforprovidingprocessheat>1500C.
Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.
10MasterPlanPart3–SustainableEnergyforAllofEarth
Temperature(C)
ThePlantoEliminateFossilFuels
3000
●Graphite/Carbon
.
AI203
.
Si02
.
Mullite
.
Steel
.
Sand
.
Alluminum
.
Concrete
.
MoltenSalt
.
ThermalOil
.
Water
2500
2000
1500
1000
500
0
500
1000
350040004500
1500200025003000
SpecificHeat(J/kgK)
Figure10:ThermalStorage-HeatStorageMedia
Note:Bubblediametersrepresentspecificheatoverusablerange.
SustainablyProduceHydrogenforSteelandFertilizer
Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).
Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.
Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:
?Nohydrogenwillbeneededforfossilfuelrefininggoingforward
?SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:
ReductionbyH2
?FeO+H=3FeO+HO
342
2
?FeO+H=FeO+HO
22
?Allglobalhydrogenproductionwillcomefromelectrolysis
gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis
19
.
11MasterPlanPart3–SustainableEnergyforAllofEarthT--
ThePlantoEliminateFossilFuels
Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,
20
,
21
.
Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum
resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen
storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 描寫(xiě)秋景的初一作文600字5篇
- 初中物理教學(xué)心得體會(huì)
- 大學(xué)畢業(yè)求職信合集五篇
- 對(duì)創(chuàng)業(yè)的認(rèn)識(shí)和理解范文五篇
- 七年級(jí)下冊(cè)歷史知識(shí)要點(diǎn)歸納總結(jié)
- 光電技術(shù)轉(zhuǎn)讓協(xié)議書(shū)(2篇)
- 租賃經(jīng)營(yíng)合同范本
- 旅游汽車(chē)租賃合同樣書(shū)
- 2025電腦購(gòu)銷(xiāo)合同合同范本
- 2025煤炭買(mǎi)賣(mài)合同
- 在建工程重大安全隱患局部停工整改令(格式)
- 《落花生》-完整版課件
- 2021年貴安新區(qū)產(chǎn)業(yè)發(fā)展控股集團(tuán)有限公司招聘筆試試題及答案解析
- 安全文化培訓(xùn) (注冊(cè)安工再培訓(xùn))課件
- 色粉-MSDS物質(zhì)安全技術(shù)資料
- 骨科學(xué)研究生復(fù)試真題匯總版
- 石油化工鋼結(jié)構(gòu)工程施工及驗(yàn)收規(guī)范
- 遼海版六年級(jí)音樂(lè)上冊(cè)第8單元《3. 演唱 姐妹們上場(chǎng)院》教學(xué)設(shè)計(jì)
- 形勢(shì)任務(wù)教育宣講材料第一講——講上情
- 物業(yè)安全員考核實(shí)施細(xì)則
- 中國(guó)地質(zhì)大學(xué)(武漢)教育發(fā)展基金會(huì)籌備成立情況報(bào)告
評(píng)論
0/150
提交評(píng)論