特斯拉可持續(xù)性能源發(fā)展“宏圖計(jì)劃”第三篇章-2023-04-新勢(shì)力_第1頁(yè)
特斯拉可持續(xù)性能源發(fā)展“宏圖計(jì)劃”第三篇章-2023-04-新勢(shì)力_第2頁(yè)
特斯拉可持續(xù)性能源發(fā)展“宏圖計(jì)劃”第三篇章-2023-04-新勢(shì)力_第3頁(yè)
特斯拉可持續(xù)性能源發(fā)展“宏圖計(jì)劃”第三篇章-2023-04-新勢(shì)力_第4頁(yè)
特斯拉可持續(xù)性能源發(fā)展“宏圖計(jì)劃”第三篇章-2023-04-新勢(shì)力_第5頁(yè)
已閱讀5頁(yè),還剩77頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

MasterPlanPart3

SustainableEnergyforAllofEarth

MasterPlanPart3–SustainableEnergyforAllofEarth

TableofContents

ExecutiveSummary

03

TheCurrentEnergyEconomyisWasteful

04

ThePlantoEliminateFossilFuels

05

1.RepowertheExistingGridwithRenewables

05

2.SwitchtoElectricVehicles

05

3.SwitchtoHeatPumpsinResidential,Business&Industry

07

4.ElectrifyHighTemperatureHeatDeliveryandHydrogen

09

5.SustainablyFuelPlanes&Boats

12

6.ManufacturetheSustainableEnergyEconomy

12

ModelingTheFullySustainableEnergyEconomy

13

?EnergyStorageTechnologiesEvaluated

18

?GenerationTechnologiesEvaluated

19

ModelResults

20

?USOnlyModelResults–MeetingNewElectrificationDemand

20

?WorldModelResults–MeetingNewElectrificationDemand

21

?BatteriesforTransportation

22

?Vehicles

22

?ShipsandPlanes

23

?WorldModelResults–Electrification&BatteriesforTransportation

24

InvestmentRequired

26

LandAreaRequired

30

MaterialsRequired

31

Conclusion

37

Appendix

38

?Appendix:Generationandstorageallocationtoend-uses

38

?Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity

39

PublishedonApril5,2023

Acknowledgements

TeslaContributors

TeslaAdvisors

Weappreciatethemanypriorstudiesthathavepushedthetopicof

FelixMaire

DrewBaglino

asustainableenergyeconomyforward,theworkoftheInternational

MatthewFox

RohanMa

EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),

MarkSimons

VineetMehta

U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom

TurnerCaldwell

variousnon-Teslaaffiliatedadvisors.

AlexYoo

EliahGilfenbaumAndrewUlvestad

02MasterPlanPart3–SustainableEnergyforAllofEarthT

ElectricitySupply

Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly

electricitydemand.

MaterialFeasibility&Investment

Determinethefeasibilityof

materialneedsfortheelectric

economyandmanufacturing

investmentnecessarytoenableit.

ExecutiveSummary

OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand

calculationsbehindthatproposal.Inputandconversationarewelcome.

Theanalysishasthreemaincomponents:

ElectricityDemand

Forecasttheelectricitydemandofafullyelectrifiedeconomy

thatmeetsglobalenergyneedswithoutfossilfuels.

Figure1:Processoverview

Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.

240TWh

Storage

0.21%

LandAreaRequired

30TW

RenewablePower

10%

2022WorldGDP

1/2

TheEnergyRequired

$10T

ManufacturingInvestment

ZERO

InsurmountableResourceChallenges

Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3

03MasterPlanPart3–SustainableEnergyforAllofEarth

TheCurrentEnergyEconomyisWasteful

AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year

1

ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.

Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply

2

,

3

.

Today’sEnergyEconomy(PWh/year)

Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis

aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.

bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.

04MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some

industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)

Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.

ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor

basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa

significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.

Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and

considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.

01RepowertheExistingGridwithRenewables

TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA

4

.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby

sustainablegenerationandstorage.

Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead

renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.

02SwitchtoElectricVehicles

Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain

efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.

VehicleClass

ICEVehicleAvg

5

ElectricVehicles

EfficiencyRatio

PassengerCar

24.2MPG

115MPGe(292Wh.mi)e

4.8X

LightTruck/Van

17.5MPG

75MPGe(450Wh.mi)f

4.3X

Class8Truck

5.3MPG(diesel)

22MPGe(1.7kWh.mi)f

4.2X

Table1:ElectricvsInternalCombustionVehicleEfficiency

cUShourlytimeseriesdatausedasmodelinputsareavailableat

/opendata/browser/fordownload

.

dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX

fTesla’sinternalestimatebasedonindustryknowledge

05MasterPlanPart3–SustainableEnergyforAllofEarth

Consumption[Wh/mi]

ThePlantoEliminateFossilFuels

Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG

6

,7

,or3.9xlower,

andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).

1200

driveconsumptionupstreamlosses

1000

800

600

400

200

0

ToyotaCorollaModel3

Figure4:ComparisonTeslaModel3vs.ToyotaCorolla

Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)

8

.Tesla’shourby

hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy

conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.

Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.

06MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

03SwitchtoHeatPumpsinResidential,Business&Industry

Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant

9

.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand

commercialbuildings,inadditiontomanyindustrialprocesses.

Air

Water

Ground

WasteHeat

HeatSource

Evaporation

ExpansionCompression

Condensation

HeatSink

Air

Water

Steam

HeatedMaterial

Figure5:HowHeatPumpsWork

10

Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday

11

.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency

(AFUE)of~90%

12

.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).

07MasterPlanPart3–SustainableEnergyforAllofEarthT

InputEnergy/HeatDelivered

PercentofAverageLoad

ThePlantoEliminateFossilFuels

1.4

energyconsumptionupstreamlosses

1.2

1.0

0.8

0.6

0.4

0.2

0.0

GasFurnaceHeatPump

Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace

ResidentialandCommercialSectors

TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region

8

.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline

electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing

heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin

morning&evening.

Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.

140

Summer

Winter

130

120

110

100

90

80

70

05101520

TimeofDay[hr]

Figure7:Residential&commercialheating&coolingloadfactorvstimeofday

08MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

IndustrialSector

Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains

offeredbyheatpumps

13

,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature

rangeareused:

Temperature/Application

COP

0-60CHeatPump

4.0

60-100CHeatPump

3.0

100-200CHeatPump

1.5

Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature

Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2

14

,15

,16

.

TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region

8

.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy

16

.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.

Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.

04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction

ElectrifyHighHeatIndustrialProcesses

Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.

Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor

bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)

17

,18

.

09MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Identifytheoptimalthermalstoragemediabytemperature/application

Charging=

heatingthermalstoragemediawithelectricity,steam,hotair,etc

ThermalBattery

Energy

=massthermal_battery

*heatcapacity*?T

Discharging=

coolingthermal

storagemediaby

heatingsomethingelse

Figure8:ThermalStorageOverview

DeliveringHeattoHighTemperatureProcesses

HotFluidsforDeliveryProcess

Steam

MoltenSalt(upto550C)

HotAir(upto2000+C)

FluidstobeHeated

Water

MoltenSalt

Air

WaterEvaporating

MoltenSaltHeating

AirHeating

Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids

RadiantHeatDirectlytoProduct

Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating

Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea

similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.

Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip

thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat

severalmaterialsarecandidatesforprovidingprocessheat>1500C.

Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.

10MasterPlanPart3–SustainableEnergyforAllofEarth

Temperature(C)

ThePlantoEliminateFossilFuels

3000

●Graphite/Carbon

.

AI203

.

Si02

.

Mullite

.

Steel

.

Sand

.

Alluminum

.

Concrete

.

MoltenSalt

.

ThermalOil

.

Water

2500

2000

1500

1000

500

0

500

1000

350040004500

1500200025003000

SpecificHeat(J/kgK)

Figure10:ThermalStorage-HeatStorageMedia

Note:Bubblediametersrepresentspecificheatoverusablerange.

SustainablyProduceHydrogenforSteelandFertilizer

Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).

Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.

Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:

?Nohydrogenwillbeneededforfossilfuelrefininggoingforward

?SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:

ReductionbyH2

?FeO+H=3FeO+HO

342

2

?FeO+H=FeO+HO

22

?Allglobalhydrogenproductionwillcomefromelectrolysis

gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis

19

.

11MasterPlanPart3–SustainableEnergyforAllofEarthT--

ThePlantoEliminateFossilFuels

Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,

20

,

21

.

Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum

resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen

storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論