版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西壯族自治區(qū)欽州市浦北縣2024年中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個2.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.3.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB,點P從點A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束,設運動時間為x(單位:s),弦BP的長為y,那么下列圖象中可能表示y與x函數關系的是()A.① B.③ C.②或④ D.①或③4.正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為()A.30° B.60° C.120° D.180°5.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時6.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.7.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.8.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱9.互聯(lián)網“微商”經營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利20元,則這件商品的進價為()A.120元 B.100元 C.80元 D.60元10.如圖所示的幾何體的主視圖正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知關于x的函數y=(m﹣1)x2+2x+m圖象與坐標軸只有2個交點,則m=_______.12.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.13.輪船沿江從A港順流行駛到B港,比從B港返回A港少用3h,若靜水時船速為26km/h,水速為2km/h,則A港和B港相距_____km.14.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.15.如圖,在△ABC中,AB=AC=2,BC=1.點E為BC邊上一動點,連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點F.當EF⊥AC時,EF的長為_______.16.一個正多邊形的一個內角是它的一個外角的5倍,則這個多邊形的邊數是_______________三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.18.(8分)定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數y=ax2-2mx+c(a,m,c均為常數且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數圖象與y軸交于點C,且S△ABC=1.①求a的值;②當該二次函數圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.19.(8分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內,點、、在同一條直線上,且,問建筑物高為多少米?20.(8分)先化簡,再求值:,其中x=-521.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數.22.(10分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關于小芳出發(fā)時間t(單位:min)的函數圖象如圖,請結合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?23.(12分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據圖中信息,解答下列問題:(1)根據圖中數據,求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數.24.某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結果保留根號).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.2、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質;2.含30度角的直角三角形;3.弧長的計算.3、D【解析】
分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】分兩種情況討論:①當點P順時針旋轉時,BP的長從增加到2,再降到0,再增加到,圖象③符合;②當點P逆時針旋轉時,BP的長從降到0,再增加到2,再降到,圖象①符合.故答案為①或③.故選D.【點睛】本題考查了動點問題函數圖象、圓的有關知識,解題的關鍵理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.4、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為120°,故選C.【點睛】本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角,掌握正多邊形的中心角的求解是解題的關鍵5、A【解析】試題解析:設貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.6、A【解析】【分析】根據主視圖是從幾何體正面看得到的圖形,認真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據此即可得.【詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關鍵.7、C【解析】
根據關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,可得答案.【詳解】解:點,與點關于軸對稱的點的坐標是,
故選:C.【點睛】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;關于原點對稱的點,橫坐標與縱坐標都互為相反數.8、A【解析】
由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.9、C【解析】
解:設該商品的進價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進價為1元/件.故選C.10、D【解析】
主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構成.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1或0或【解析】
分兩種情況討論:當函數為一次函數時,必與坐標軸有兩個交點;
當函數為二次函數時,將(0,0)代入解析式即可求出m的值.【詳解】解:(1)當m﹣1=0時,m=1,函數為一次函數,解析式為y=2x+1,與x軸交點坐標為(﹣,0);與y軸交點坐標(0,1).符合題意.(2)當m﹣1≠0時,m≠1,函數為二次函數,與坐標軸有兩個交點,則過原點,且與x軸有兩個不同的交點,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.將(0,0)代入解析式得,m=0,符合題意.(3)函數為二次函數時,還有一種情況是:與x軸只有一個交點,與Y軸交于交于另一點,這時:△=4﹣4(m﹣1)m=0,解得:m=.故答案為1或0或.【點睛】此題考查一次函數和二次函數的性質,解題關鍵是必須分兩種情況討論,不可盲目求解.12、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.13、1.【解析】
根據逆流速度=靜水速度-水流速度,順流速度=靜水速度+水流速度,表示出逆流速度與順流速度,根據題意列出方程,求出方程的解問題可解.【詳解】解:設A港與B港相距xkm,
根據題意得:,
解得:x=1,
則A港與B港相距1km.
故答案為:1.【點睛】此題考查了分式方程的應用題,解答關鍵是在順流、逆流過程中找出等量關系構造方程.14、4π﹣1【解析】分析:連結OC,根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,
∴∠COD=45°,
∴OC=CD=4,
∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積
==4π-1.故答案是:4π-1.點睛:考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.15、1+【解析】
當AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依據Rt△CFG≌Rt△CFH,可得CH=CG=,再根據勾股定理即可得到EF的長.【詳解】解:如圖,當AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,設EF=x,則HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案為1+.【點睛】本題主要考查了角平分線的性質,勾股定理以及等腰三角形的性質的運用,解決問題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.16、1【解析】
設這個正多邊的外角為x°,則內角為5x°,根據內角和外角互補可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數可得邊數.【詳解】設這個正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【點睛】此題主要考查了多邊形的內角和外角,關鍵是計算出外角的度數,進而得到邊數.三、解答題(共8題,共72分)17、(1)證明見解析;(1)2【解析】分析:(1)根據角平分線的定義可得∠1=∠1,再根據等角的余角相等求出∠BEF=∠AFD,然后根據對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質,勾股定理的應用,等角的余角相等的性質,熟記各性質并準確識圖是解題的關鍵.18、(1)ac<3;(3)①a=1;②m>或m<.【解析】
(1)設A
(p,q).則B
(-p,-q),把A、B坐標代入解析式可得方程組即可得到結論;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據三角形的面積公式列方程即可得到結果;②由①可知:拋物線解析式為y=x3-3mx-1,根據M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,建立新的二次函數:y=x3-(3m+)x-,根據題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結論.【詳解】(1)設A
(p,q).則B
(-p,-q),
把A、B坐標代入解析式可得:,
∴3ap3+3c=3.即p3=?,
∴?≥3,
∵ac≠3,
∴?>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:拋物線解析式為y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依題,只需聯(lián)立在-1≤x≤3內只有一個解即可,
∴x3-3mx-1=x+,
故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,
建立新的二次函數:y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負半軸.
不妨設方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)
則x1+x3=3m+,x1x3=?
∵方程x3?(3m+)x?=3在-1≤x≤3內只有一個解.
故分兩種情況討論:
(Ⅰ)若-1≤x1<3且x3>3:則.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:則.即:,
可得:m<,
綜上所述,m>或m<.【點睛】本題考查了待定系數法求二次函數的解析式,一元二次方程根與系數的關系,三角形面積公式,正確的理解題意是解題的關鍵.19、(1)m(2)米【解析】分析:(1)由三角函數的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點,∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關鍵是根據題意構造直角三角形,將實際問題轉化為解直角三角形的問題;掌握數形結合思想與方程思想在題中的運用.20、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.21、(1);(2)30°【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;
(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質、線段垂直平分線的性質、相似三角形的判定和性質、勾股定理、等邊三角形的判定和性質.解題的關鍵是連接OE,構造直角三角形.22、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時CD段的函數解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時間有7.1分鐘.【解析】分析:(1)根據速度=路程÷時間可求出小芳上山的速度;根據速度=路程÷時間+小芳的速度可求出爸爸上山的速度;
(2)根據爸爸及小芳的速度結合點C的橫坐標(6+24=30),可得出點C的坐標,由點D的橫坐標比點E少4可得出點D的坐標,再根據點C、D的坐標利用待定系數法可求出CD段的函數解析式;
(3)根據點D、E的坐標利用待定系數法可求出DE段的函數解析式,分別求出CD、DE段縱坐標大于120時x的取值范圍,結合兩個時間段即可求出結論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴點C的坐標為(30,72);∵二人返回山下的時間相差4min,44﹣4=40(min),∴點D的坐標為(40,192).設爸爸下山時CD段的函數解析式為y=kx+b,將C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山時CD段的函數解析式為y=12x﹣288(24≤x≤40).(3)設DE段的函數解析式為y=mx+n,將D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函數解析式為y=﹣48x+2112(40≤x≤44).當y=12x﹣288>120時,34<x≤40;當y=﹣48x+2112>120時,40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不見的時間有7.1分鐘.點睛:本題考查了一次函數的應用、待定系數法求一次函數解析式以及一次函數圖象上點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度消防安全應急預案修訂與培訓合同3篇
- 二零二五年度展覽展示道具設計與制作合同3篇
- 二零二五年度智能農業(yè)設備研發(fā)個人合伙退出合同3篇
- 二零二五年度房屋買賣合同附加物業(yè)管理合同3篇
- 二零二五年度委托加工生產產品合同3篇
- 二零二五年度房產購買貸款按揭合同范本(含車位)3篇
- 二零二五年度建筑工地磚渣資源化利用合作協(xié)議3篇
- 二零二五年度公益扶貧項目幫扶協(xié)議
- 二零二五年度新能源汽車充電車位租賃優(yōu)惠政策合同3篇
- 二零二五年度施工現(xiàn)場安全風險評估與整改合同3篇
- 2025年四川長寧縣城投公司招聘筆試參考題庫含答案解析
- 2024年06月上海廣發(fā)銀行上海分行社會招考(622)筆試歷年參考題庫附帶答案詳解
- TSG 51-2023 起重機械安全技術規(guī)程 含2024年第1號修改單
- 計算機科學導論
- 浙江省杭州市錢塘區(qū)2023-2024學年四年級上學期英語期末試卷
- 《工程勘察設計收費標準》(2002年修訂本)
- 2024年一級消防工程師《消防安全技術綜合能力》考試真題及答案解析
- 2024-2025學年六上科學期末綜合檢測卷(含答案)
- 安徽省森林撫育技術導則
- 2023七年級英語下冊 Unit 3 How do you get to school Section A 第1課時(1a-2e)教案 (新版)人教新目標版
- 泌尿科主任述職報告
評論
0/150
提交評論