河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省秦皇島市撫寧區(qū)臺營學(xué)區(qū)2024年十校聯(lián)考最后數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差2.下列實數(shù)中,結(jié)果最大的是()A.|﹣3| B.﹣(﹣π) C. D.33.已知一次函數(shù)y=kx+3和y=k1x+5,假設(shè)k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.5.-4的絕對值是()A.4 B. C.-4 D.6.設(shè)α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-17.弘揚社會主義核心價值觀,推動文明城市建設(shè).根據(jù)“文明創(chuàng)建工作評分細(xì)則”,l0名評審團(tuán)成員對我市2016年度文明刨建工作進(jìn)行認(rèn)真評分,結(jié)果如下表:人數(shù)2341分?jǐn)?shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.58.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°9.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.10.在中國集郵總公司設(shè)計的2017年紀(jì)特郵票首日紀(jì)念截圖案中,可以看作中心對稱圖形的是()A.千里江山圖B.京津冀協(xié)同發(fā)展C.內(nèi)蒙古自治區(qū)成立七十周年D.河北雄安新區(qū)建立紀(jì)念二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:a2-2ab+b2-1=______.12.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.13.計算:×(﹣2)=___________.14.因式分解.15.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達(dá)奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達(dá)A地,結(jié)果還是小明先到達(dá)目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當(dāng)小明到達(dá)B地時,小亮距離A地_____千米.16.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當(dāng)?shù)臈l件________,使ABCD成為正方形.三、解答題(共8題,共72分)17.(8分)某公司投入研發(fā)費用80萬元(80萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬件)與售價x(元/件)之間滿足函數(shù)關(guān)系式y(tǒng)=﹣x+1.求這種產(chǎn)品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數(shù)關(guān)系式;該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.18.(8分)如圖,在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B的直線與CD的延長線交于點F,AC∥BF.(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;(2)若tan∠F=,CD=a,請用a表示⊙O的半徑;(3)求證:GF2﹣GB2=DF?GF.19.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當(dāng)點E在邊BC上時,求證DE=EB;如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.20.(8分)有一個二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x1,y1)(點B在點A的右側(cè));②對稱軸是x=3;③該函數(shù)有最小值是﹣1.(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;(1)將該函數(shù)圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.21.(8分)如圖,正方形OABC的面積為9,點O為坐標(biāo)原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當(dāng)S=時,對應(yīng)的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.22.(10分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標(biāo).23.(12分)計算:(﹣1)4﹣2tan60°+.24.如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.2、B【解析】

正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關(guān)鍵是要明確:正實數(shù)>0>負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而?。?、B【解析】

依題意在同一坐標(biāo)系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意作出相應(yīng)的圖像.4、D【解析】

如圖,∵AD=1,BD=3,∴,當(dāng)時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項A、B、C的條件都不能推出DE∥BC,故選D.5、A【解析】

根據(jù)絕對值的概念計算即可.(絕對值是指一個數(shù)在坐標(biāo)軸上所對應(yīng)點到原點的距離叫做這個數(shù)的絕對值.)【詳解】根據(jù)絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.6、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數(shù)的關(guān)系.7、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關(guān)鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).8、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.9、C【解析】

主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關(guān)鍵是熟練的掌握截一個幾何體.10、C【解析】

根據(jù)中心對稱圖形的概念求解.【詳解】解:A選項是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B選項不是中心對稱圖形,故本選項錯誤;C選項為中心對稱圖形,故本選項正確;D選項不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題主要考查了中心對稱圖形的概念:關(guān)鍵是找到相關(guān)圖形的對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、(a-b+1)(a-b-1)【解析】

當(dāng)被分解的式子是四項時,應(yīng)考慮運用分組分解法進(jìn)行分解,前三項a2-2ab+b2可組成完全平方公式,再和最后一項用平方差公式分解.【詳解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【點睛】本題考查用分組分解法進(jìn)行因式分解.難點是采用兩兩分組還是三一分組.本題前三項可組成完全平方公式,可把前三項分為一組,分解一定要徹底.12、1或1【解析】

由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內(nèi)切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內(nèi)切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關(guān)系.此題難度不大,解題的關(guān)鍵是注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,注意分類討論思想的應(yīng)用.13、-1【解析】

根據(jù)“兩數(shù)相乘,異號得負(fù),并把絕對值相乘”即可求出結(jié)論.【詳解】故答案為【點睛】本題考查了有理數(shù)的乘法,牢記“兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘”是解題的關(guān)鍵.14、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.15、1【解析】

根據(jù)題意設(shè)小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設(shè)小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當(dāng)小明到達(dá)B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于列出方程組.16、∠BAD=90°(不唯一)【解析】

根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當(dāng)∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.三、解答題(共8題,共72分)17、(1)W1=﹣x2+32x﹣2;(2)該產(chǎn)品第一年的售價是16元;(3)該公司第二年的利潤W2至少為18萬元.【解析】

(1)根據(jù)總利潤=每件利潤×銷售量﹣投資成本,列出式子即可;(2)構(gòu)建方程即可解決問題;(3)根據(jù)題意求出自變量的取值范圍,再根據(jù)二次函數(shù),利用而學(xué)會設(shè)的性質(zhì)即可解決問題.【詳解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由題意:20=﹣x2+32x﹣2.解得:x=16,答:該產(chǎn)品第一年的售價是16元.(3)由題意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7時,W2有最小值,最小值=18(萬元),答:該公司第二年的利潤W2至少為18萬元.【點睛】本題考查二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學(xué)會構(gòu)建方程或函數(shù)解決問題.18、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ACF=∠F,根據(jù)垂徑定理可得CE=CD=a,連接OC,設(shè)圓的半徑為r,表示出OE,然后利用勾股定理列式計算即可求出r.(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證.【詳解】解:(1)證明:∵OA=OB,∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∴OB⊥FB.∵AB是⊙O的弦,∴點B在⊙O上.∴BF是⊙O的切線.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=CD=a.∵tan∠F=,∴,即.解得.連接OC,設(shè)圓的半徑為r,則,在Rt△OCE中,,即,解得.(3)證明:連接BD,∵∠DBG=∠ACF,∠ACF=∠F(已證),∴∠DBG=∠F.又∵∠FGB=∠FGB,∴△BDG∽△FBG.∴,即GB2=DG?GF.∴GF2﹣GB2=GF2﹣DG?GF=GF(GF﹣DG)=GF?DF,即GF2﹣GB2=DF?GF.19、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.20、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解析】

(1)利用二次函數(shù)解析式的頂點式求得結(jié)果即可;(1)由已知條件可知直線與圖象“G”要有3個交點.分類討論:分別求得平行于x軸的直線與圖象“G”有1個交點、1個交點時x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個交點時x3+x4+x5的取值范圍.【詳解】(1)有上述信息可知該函數(shù)圖象的頂點坐標(biāo)為:(3,﹣1)設(shè)二次函數(shù)表達(dá)式為:y=a(x﹣3)1﹣1.∵該圖象過A(1,0)∴0=a(1﹣3)1﹣1,解得a=.∴表達(dá)式為y=(x﹣3)1﹣1(1)如圖所示:由已知條件可知直線與圖形“G”要有三個交點1當(dāng)直線與x軸重合時,有1個交點,由二次函數(shù)的軸對稱性可求x3+x4=6,∴x3+x4+x5>11,當(dāng)直線過y=(x﹣3)1﹣1的圖象頂點時,有1個交點,由翻折可以得到翻折后的函數(shù)圖象為y=﹣(x﹣3)1+1,∴令(x﹣3)1+1=﹣1時,解得x=3+1或x=3﹣1(舍去)∴x3+x4+x5<9+1.綜上所述11<x3+x4+x5<9+1.【點睛】考查了二次函數(shù)綜合題,涉及到待定系數(shù)法求二次函數(shù)解析式,拋物線的對稱性質(zhì),二次函數(shù)圖象的幾何變換,直線與拋物線的交點等知識點,綜合性較強,需要注意“數(shù)形結(jié)合”數(shù)學(xué)思想的應(yīng)用.21、(1)y=(x>0);(2)S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時,對應(yīng)的t值為或6;(3)當(dāng)t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標(biāo)為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當(dāng)點P1在點B的左側(cè)時,S=t?(-3)=-3t+9與當(dāng)點P2在點B的右側(cè)時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標(biāo)為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當(dāng)點P1在點B的左側(cè)時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當(dāng)點P2在點B的右側(cè)時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時,對應(yīng)的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當(dāng)t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.22、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標(biāo)是(3,﹣32(3)M的坐標(biāo)為(1,﹣83【解析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);(3)A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標(biāo).試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(biāo)(2,﹣2)A點的坐標(biāo)是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關(guān)系式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論