




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.63.已知拋物線:,點(diǎn)為上一點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.54.函數(shù)的部分圖像大致為()A. B.C. D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.326.已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.38.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.9.雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.10.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.11.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.12.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某同學(xué)周末通過(guò)拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為_(kāi)___________.14.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.15.已知隨機(jī)變量服從正態(tài)分布,若,則_________.16.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別是,,,已知.(1)求角;(2)若,,求的面積.18.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若,,證明:.19.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.20.(12分)萬(wàn)眾矚目的第14屆全國(guó)冬季運(yùn)動(dòng)運(yùn)會(huì)(簡(jiǎn)稱(chēng)“十四冬”)于2020年2月16日在呼倫貝爾市盛大開(kāi)幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請(qǐng)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再?gòu)倪@6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,,求的值.22.(10分)已知,且的解集為.(1)求實(shí)數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實(shí)數(shù)取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對(duì)應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.2、D【解析】
作,垂足為,過(guò)點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過(guò)點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)椋詾榫€段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.3、C【解析】
由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.4、A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)?,通過(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)?,則,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱(chēng),排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.5、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.6、A【解析】
可將問(wèn)題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱(chēng)直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱(chēng)直線為,當(dāng)時(shí),,,當(dāng)時(shí),,則當(dāng)時(shí),,單減,當(dāng)時(shí),,單增;當(dāng)時(shí),,,當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫(huà)出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問(wèn)題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題7、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).8、C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.10、B【解析】
先求出從不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過(guò)18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.11、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為求得值.【詳解】解:在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,,即.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.12、B【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
采用列舉法計(jì)算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.14、【解析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.15、0.4【解析】
因?yàn)殡S機(jī)變量ζ服從正態(tài)分布,利用正態(tài)曲線的對(duì)稱(chēng)性,即得解.【詳解】因?yàn)殡S機(jī)變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對(duì)稱(chēng),所.【點(diǎn)睛】本題考查了正態(tài)分布曲線的對(duì)稱(chēng)性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16、【解析】
①根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點(diǎn)睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強(qiáng).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡(jiǎn)題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因?yàn)?,所?(2)由,得.由正弦定理,得,因?yàn)?,所?又因,所以.所以的面積.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡(jiǎn)該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡(jiǎn)該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.18、(1)(2)見(jiàn)證明【解析】
(1)利用零點(diǎn)分段法討論去掉絕對(duì)值求解;(2)利用絕對(duì)值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時(shí),不等式可化為.當(dāng)時(shí),,,所以;當(dāng)時(shí),,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式問(wèn)題的求解,含有絕對(duì)值不等式的解法一般是使用零點(diǎn)分段討論法.19、(1)極大值,無(wú)極小值;(2).(3)見(jiàn)解析【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問(wèn)題得以解決;(3)取得到,取,可得,累加和根據(jù)對(duì)數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無(wú)極小值;(2)因?yàn)椋?,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時(shí),函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點(diǎn)睛】此題考查了參數(shù)的取值范圍以及恒成立的問(wèn)題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.20、(1)列聯(lián)表見(jiàn)解析,有把握;(2)分布列見(jiàn)解析,.【解析】
(1)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表,求出,從而有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【詳解】解:(1)由題意得下表:男女合計(jì)冰雪迷402060非冰雪迷202040合計(jì)6040100的觀測(cè)值為所以有的把握認(rèn)為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CAS 907-2024面向分布式天然氣供應(yīng)的智能化系統(tǒng)技術(shù)要求
- T/CCOA 76-2023濃香核桃油
- 北京市消費(fèi)類(lèi)預(yù)付費(fèi)服務(wù)交易合同行為指引(試行)(標(biāo)準(zhǔn)版)5篇
- 有關(guān)印刷品訂貨合同7篇
- 專(zhuān)業(yè)版抵押房子借款協(xié)議8篇
- T/ZRCX 004-2018集成灶
- 眼科疾病常用穴位
- T/ZHCA 105-2022靈芝子實(shí)體
- 癲癇預(yù)防與急救
- 健康促進(jìn)單位創(chuàng)建課件
- 2025年廣東廣州市高三二模高考英語(yǔ)試卷試題(含答案詳解)
- 《公路技術(shù)狀況評(píng)定》課件-任務(wù)三:路基技術(shù)狀況指數(shù)SCI
- 交通運(yùn)輸行業(yè)反腐心得體會(huì)
- 基因突變和基因重組第1課時(shí)課件高一下學(xué)期生物人教版必修2
- 外墻清洗施工方案
- 中華民族共同體概論知到課后答案智慧樹(shù)章節(jié)測(cè)試答案2025年春麗水學(xué)院
- 2024年山東棗莊事業(yè)單位招聘筆試真題
- 太陽(yáng)能路燈采購(gòu)安裝方案投標(biāo)文件(技術(shù)方案)
- 黑龍江商業(yè)職業(yè)學(xué)院《生活中的科學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年中國(guó)校園外賣(mài)行業(yè)市場(chǎng)深度評(píng)估及投資戰(zhàn)略規(guī)劃報(bào)告
- 電網(wǎng)工程設(shè)備材料信息參考價(jià)(2024年第四季度)
評(píng)論
0/150
提交評(píng)論