版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市中學(xué)雅培粹中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠12.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.3.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.4.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份5.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)6.估計﹣2的值應(yīng)該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間7.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形8.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當(dāng)△BPQ與△BEA相似時,t=14.1.其中正確結(jié)論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤9.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤10.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2二、填空題(共7小題,每小題3分,滿分21分)11.同時拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率是.12.有一枚質(zhì)地均勻的骰子,六個面分別表有1到6的點數(shù),任意將它拋擲兩次,并將兩次朝上面的點數(shù)相加,則其和小于6的概率是______.13.分解因式:ax2﹣2ax+a=___________.14.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應(yīng)點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.15.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.16.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側(cè)面,所得的圓錐的高為______.17.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.三、解答題(共7小題,滿分69分)18.(10分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大??;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?9.(5分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設(shè)OM=x,ON=x+4,①若x=0時,使P、M、N構(gòu)成等腰三角形的點P有個;②若使P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是____________.20.(8分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎(chǔ)上再購進一批B種鋼筆,漲價賣出,經(jīng)統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設(shè)文具店將新購進的B種鋼筆每支漲價a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?21.(10分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長.22.(10分)(1)計算:(2)先化簡,再求值:,其中x是不等式的負整數(shù)解.23.(12分)為了解某校學(xué)生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學(xué)生約有多少人?24.(14分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結(jié)果保留根號)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.2、C【解析】
根據(jù)中心對稱圖形的概念進行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;
B、不是中心對稱圖形,故此選項錯誤;
C、是中心對稱圖形,故此選項正確;
D、不是中心對稱圖形,故此選項錯誤;
故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、B【解析】根據(jù)不等式的性質(zhì)在不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數(shù),不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數(shù),不等號的方向不變,正確.故選B.4、B【解析】
解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.5、B【解析】
根據(jù)方程組求出點A坐標,設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問題.【詳解】由,解得或,
∴A(2,1),B(1,0),
設(shè)C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案為(0,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點坐標問題、勾股定理、方程組等知識,解題的關(guān)鍵是會利用方程組確定兩個函數(shù)的交點坐標,學(xué)會用方程的思想思考問題.6、A【解析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關(guān)鍵.7、B【解析】
根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;
C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.
故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、D【解析】
根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當(dāng)14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當(dāng)或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.9、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.10、D【解析】試題分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內(nèi),y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數(shù)的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點:列表法與樹狀圖法.12、【解析】
列舉出所有情況,看兩個骰子向上的一面的點數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:
兩個骰子向上的一面的點數(shù)和小于6的有10種,
則其和小于6的概率是,
故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.13、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、或1【解析】
圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當(dāng)∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!15、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當(dāng)DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當(dāng)AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點P在線段BD上是解題的關(guān)鍵.16、4cm【解析】
求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長==4π,
圓錐的底面半徑為4π÷2π=2,
故圓錐的高為:=4,
故答案為4cm.【點睛】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.17、【解析】
連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(I)65°;(II)72°【解析】
(I)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理.19、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構(gòu)建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當(dāng)⊙M與OB相切時,設(shè)切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當(dāng)M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以O(shè)M為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當(dāng)時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數(shù)形結(jié)合的思想解決問題,解題的關(guān)鍵是熟練掌握已知一邊,作等腰三角形的畫法.20、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解析】(1)設(shè)A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設(shè)購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數(shù)z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數(shù),∴當(dāng)a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.21、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據(jù)直線與⊙O相切的性質(zhì),得OC⊥CD.又因為AD⊥CD,根據(jù)同一平面內(nèi),垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據(jù)等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據(jù)角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據(jù)兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內(nèi)角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據(jù)垂徑定理可得FG=CG,因為OC=,∠OCE=45°.等腰直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化窗戶安裝與維護安全協(xié)議書4篇
- 2025年度災(zāi)害預(yù)防慈善捐贈執(zhí)行合同范本4篇
- 二零二五版旅行社環(huán)保旅游推廣合作框架協(xié)議3篇
- 二零二五年度櫥柜安裝及家居安全檢測合同4篇
- 工業(yè)互聯(lián)網(wǎng)平臺核心技術(shù)與創(chuàng)新發(fā)展方案
- 2025年度個人綠色消費貸款展期服務(wù)合同4篇
- 小學(xué)數(shù)學(xué)課堂中的合作學(xué)習(xí)與互動實踐
- 職場安全教育如何保護老年員工的財產(chǎn)安全
- 二零二五年度房地產(chǎn)項目采購人員廉潔行為規(guī)范3篇
- 2025年度個人吊車租賃合同爭議解決及仲裁協(xié)議2篇
- 《縣域腫瘤防治中心評估標準》
- 做好八件事快樂過寒假-2024-2025學(xué)年上學(xué)期中學(xué)寒假家長會課件-2024-2025學(xué)年高中主題班會課件
- 人員密集場所消防安全培訓(xùn)
- 液晶高壓芯片去保護方法
- 使用AVF血液透析患者的護理查房
- 拜太歲科儀文檔
- 2021年高考山東卷化學(xué)試題(含答案解析)
- 2020新譯林版高中英語選擇性必修一重點短語歸納小結(jié)
- GB/T 19668.7-2022信息技術(shù)服務(wù)監(jiān)理第7部分:監(jiān)理工作量度量要求
- 品管圈活動提高氧氣霧化吸入注意事項知曉率
- 連續(xù)鑄軋機的工作原理及各主要參數(shù)
評論
0/150
提交評論