2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第1頁
2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第2頁
2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第3頁
2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第4頁
2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年江西省吉安市峽江縣八年級(下)期末數(shù)學(xué)試卷

一、選擇題(本大題共6小題,共18.0分。在每小題列出的選項中,選出符合題目的一項)

1.峽江縣為加強生活垃圾管理,改善城鄉(xiāng)環(huán)境,保障人民健康,開展“垃圾分類你我同行,

共建衛(wèi)生文明峽江”的活動.下列垃圾分類標(biāo)志是中心對稱圖形的是()

A.

2.不等式組{;/6<0的解集在數(shù)軸上表示為()

3.在△4BC中,ZC=90°,乙4=30。,4B=8,點。、E分別是AC、AB的中點,則DE的長

度為()

A.2B.3C.4D.5

4.若要使分式皆有意義,則x的取值范圍是()

A.%H—3B.%>1C.x豐—3且%W1D.%H1

5.若關(guān)于%的分式方程2=&有增根,則他的值為()

A.3B.0C.-3D.2

6.如圖是一個直角三角形紙片,若沿著紙片的任意兩邊中點的連線進行裁剪,

然后再拼成平行四邊形,則拼成不同的平行四邊形的方法共有()

A.3種

B.4種

C5種

D.6種

二、填空題(本大題共6小題,共18.0分)

7.若久V=3,則久2+1的值是

8.如果一個多邊形的內(nèi)角和是外角和的2倍,則這個多邊形是邊形.

9.一次函數(shù)y1=kr+b與丫2=%+。的圖象如圖,則關(guān)于%的

不等式kx+b>%+。的解集是.

10.如圖,在口ZBCD中,AB=5,分別以A、C為圓心,以大于/C的長為半徑畫弧,兩弧相

交于M、N兩點,直線MN交4)于點E,若△CDE的周長是12,貝!JBC的長為.

11.如果不等式組:無解,則a的取值范圍為

12.如圖,△ABC是等邊三角形,4。平分ABAC,點P是射線4。

上一點,當(dāng)AABP是等腰三角形時,乙CBP=.

三、解答題(本大題共12小題,共84.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

13.(本小題3。分)

解方程:^一1=總

14.(本小題3.0分)

如圖,在△4BC中,AD平分ABAC,DE1AB,DF1AC,AB=8,AC=6,△4BD的面積

為8,求△AC。的面積.

A

15.(本小題6.0分)

因式分解:

(l)a2(x—y)+b2(y—%).

(2)(%—y)2—10(%—y)+25.

16.(本小題6.0分)

解一元一次不等式與i-1W等,并請寫出該不等式的非正整數(shù)解.

17.(本小題6.0分)

如圖,在4BCD中,=BC,點E為48的中點,請僅用無刻度的直尺,按照下列要求作圖(保

留作圖痕跡,不寫作法).

(1)在圖①中,在CD上找一點尸,使得EF〃4C;

(2)在圖②中,在4c上找一點P,使得BP平分N/1BC.

18.(本小題6.0分)

如圖,E、F是四邊形力BCD的對角線4c上的兩點.

(1)若力B=CD,只添加一個條件:,使四邊形2BCD為平行四邊形.

(2)在(1)的條件下,若BE1AC,DFVAC,求證:四邊形BEDF是平行四邊形.

AD

E

B

19.(本小題8.0分)

下面是某同學(xué)進行分式(嘉力-篝)+急化簡的部分過程,請認真閱讀并完成相應(yīng)任務(wù).

解:原式=[儲早—箸].爰①;

=rx-3_2x+3i.x+3⑨.

LX+3X+31-3久

_x—3—2x+3x+3/2x

-—x+3

(1)該同學(xué)第步開始出現(xiàn)錯誤;并請你改正錯誤,且完成后續(xù)的化簡過程;

(2)該分式的值______(填“能”或“不能”)等于零;如果能,則x=.

20.(本小題8.0分)

峽江縣某學(xué)校為落實教育部課程標(biāo)準(zhǔn)(2022年版)勞動課程,特開辟一處耕種園讓學(xué)生體驗農(nóng)

耕勞動,現(xiàn)需要采購一批菜苗.據(jù)了解,市場上每捆2種菜苗價格是每捆B種菜苗價格的1.5倍,

用300元購買4種菜苗的數(shù)量比用同樣價格購買8種菜苗的數(shù)量少2捆.

(1)求市場上每捆a種菜苗和B種菜苗的價格.

(2)學(xué)校決定在市場上購買A,B兩種菜苗共100捆,總費用不超過6000元,請問最多可以購買

4種菜苗多少捆?

21.(本小題8.0分)

教材再現(xiàn):(1)如圖,這是北師大版八年級下冊數(shù)學(xué)教材一道問題的部分內(nèi)容.請你將證明過程

補充完整.

例3已知:如圖,直線a〃dA,B是直線a

上任意兩點,AC1b,BD1b,垂足分別

為C,D.

cAB

|求證:AC=BD.

證明:

AC=BD(平行四邊形的對邊相等).

CD

如果兩條直線互相平行,則其中一條直

線上任意一點到另一條直線的距離都相等,

這個距離稱為平行線之間的距離.

知識延伸:(2)如圖①,已知力0〃8C,求證:AABC和ADBC的面積相等.

知識應(yīng)用:(3)如圖②,^ADC=90°,AD=CD=6,?/>IC,連接力E,則△ADE的面

積是.(提示:過點E作EF1CD于點尸,連接4F)

圖①圖②

22.(本小題9.0分)

閱讀材料,解決問題:對形如a2±2ab+爐的式子稱為完全平方式,我們可以直接運用公式

進行因式分解,例如/—4x+4=Q-2)2;而對于a2+6a+8這樣無法直接運用公式進行

因式分解的代數(shù)式,我們可以先適當(dāng)變形,再運用公式進行因式分解,例如:

小+6a+8=a?+6a+9—9+8=(a+3)2—1=(a+3+l)(a+3—1)=(a+4)(a+

2);

(1)如果9——kxy+25y2是一個完全平方式,則k=;

(2)因式分解:a2-4a-12;

(3)有時我們還可以仿照上面的方法解決求代數(shù)式值的最大(或最小)值問題,例如:

a?+6a+8=Q?+6a+9—9+8=(a+3/-1,(a+3)2>0,??.((!+3/—1>—1,

則當(dāng)Q=-3時,代數(shù)式小+6a+8有最小值,其值為-1.請問:當(dāng)久=時,代數(shù)式---

6%+6有最(填“大”或“小”)值,其值為.

23.(本小題9.0分)

【探究證明】(1)如圖①,在四邊形2BCD中,ZB=ZC=90°,P是BC上一點,PA=PD,

AB=PC.求證:BC=AB+CD.

【結(jié)論應(yīng)用】(2)如圖②,等腰直角三角板放置在平面直角坐標(biāo)系中,其中4(-2,0),5(0,1),

直接寫出點C的坐標(biāo)為.

【聯(lián)系拓展】(3)如圖③,在四邊形2BCD中,NB=NC=45。,P是BC上一點,PA=PD,

AAPD=90°,當(dāng)月B=2/7,CD=3,7時,求BC的值.

24.(本小題12.0分)

23.如圖,在平面直角坐標(biāo)系中,點4(—4,1),點B(—1,3),點C(—1,1).

(1)將△力BC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180。,畫出旋轉(zhuǎn)后對應(yīng)的△4/1。;平移△48C,若4對應(yīng)

的點出坐標(biāo)為(一4,一5),畫出A4B2c2;若A&B1C與A4B2c2成中心對稱,請直接寫出對

稱中心坐標(biāo)為;

(2)在x軸上有兩個動點M和N(點M在點N的左邊),其中MN=1,若要使得四邊形力MNB的周

長最小,則請直接寫出點M的坐標(biāo)為;

(3)在平面直角坐標(biāo)系中,存在一點P,使得以2、B、0、P為頂點的四邊形是平行四邊形,

請直接寫出滿足條件點P的坐標(biāo)為.

答案和解析

1.【答案】c

【解析】解:把一個圖形繞某一點旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這

個圖形就叫做中心對稱圖形,這個點叫做對稱中心.

選項4B,。都找不出一個點,使這些圖形繞某一點旋轉(zhuǎn)180。,旋轉(zhuǎn)后的圖形能夠與原來的圖形

重合,故不是中心對稱圖形;

選項C能找到一個點,使這些個圖形繞這一點旋轉(zhuǎn)180。,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,

故選項C是中心對稱圖形.

故選:C.

根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.

本題考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖形重合.

2.【答案】B

【解析】解:由2x-6W0得:x<3,

又x>2,

所以不等式組的解集為2〈無33,

故選:B.

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小找

不到確定不等式組的解集.

本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小

取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.

3.【答案】A

【解析】解:在A/IBC中,NC=90。,NA=30。,AB=8,

則BC=^AB='x8=4,

???點D、E分別是AC、4B的中點,

C'----------p---------

DE是△ABC的中位線,

1

DE=”C=2,

故選:A.

根據(jù)含30。角的直角三角形的性質(zhì)求出邊長,再根據(jù)三角形中位線定理計算即可.

本題考查的是三角形中位線定理、含30。角的直角三角形的性質(zhì),掌握三角形中位線等于第三邊的

一半是解題的關(guān)鍵.

4.【答案】D

【解析】解:要使分式要有意義,貝k-140,

x—1

解得:X力1.

故選:D.

直接利用分式有意義的條件是分母不等于零,進而得出答案.

此題主要考查了分式有意義的條件,正確掌握相關(guān)性質(zhì)是解題關(guān)鍵.

5.【答案】A

【解析】解:方程兩邊都乘刀-3,

得x—2(%—3)=m

???原方程有增根,

二最簡公分母%-3=0,

解得%=3,

當(dāng)x=3時,m—3

故小的值是3.

故選:A.

增根是化為整式方程后產(chǎn)生的不適合分式方程的根.所以應(yīng)先確定增根的可能值,讓最簡公分母

乂―3=0,得到x=3,然后代入化為整式方程的方程算出小的值.

本題考查了分式方程的增根.增根問題可按如下步驟進行:

①讓最簡公分母為0確定增根;

②化分式方程為整式方程;

③把增根代入整式方程即可求得相關(guān)字母的值.

6.【答案】D

【解析】解:如圖,可以拼成6個平行四邊形.

故選:D.

根據(jù)平行四邊形的定義拼剪可得結(jié)論.

本題考查圖形的拼剪,平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會動手操作,靈活運用

所學(xué)知識解決問題.

7.【答案】11

【解析】

【分析】

本題主要考查了完全平方公式的運用,利用好乘積二倍項不含字母是解題的關(guān)鍵.

把x-工=3利用完全平方公式兩邊平方展開,整理即可得解.

X

【解答】

解…一;=3,

;.(久-乎=9,

即/一2+5=9,

解得/+妥=9+2=11.

故答案為:11.

8.【答案】六

【解析】解:設(shè)這個多邊形為n邊形,由題意得,

(n-2)X180°=360°X2,

解得幾=6,

即這個多邊形為六邊形,

故答案為:六.

根據(jù)多邊形的內(nèi)角和與外角和的計算方法列方程求解即可.

本題考查多邊形的內(nèi)角與外角,掌握多邊形內(nèi)角和、外角和的計算方法是正確解答的前提.

9.【答案】%<3

【解析】解:當(dāng)x<3時,kx+b>x+a,

所以不等式kx+b>x+a的解集為x<3.

故答案為:%<3

根據(jù)觀察圖象,找出直線為=/cc+b在直線%=x+a上方所對應(yīng)的自變量的范圍即可.

本題考查了一次函數(shù)與■元■次不等式:一次函數(shù)與元一次不等式的關(guān)系從函數(shù)的角度看,就

是尋求使一次函數(shù)y-kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,

就是確定直線y=依+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.

10.【答案】7

【解析】解:???四邊形4BCD是平行四邊形,

AB=CD=5,AD=BC,

由作圖可知MN垂直平分線段AC,

???EA=EC,

???△COE的周長為12,

CE+ED+CD=12,

AE+ED+5=12,

AD+5=12,

AD=7,

??.BC=AD=7.

故答案為:7.

證明AD+CD=12,求出4D可得結(jié)論.

本題考查作圖-基本作圖,平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所

學(xué)知識解決問題.

11.【答案】aW3

【解析】解:解不等式久一3>0,得%>3,

解不等式%-。<0,x<a.

???不等式組{:二;:,無解,

a<3.

故答案為:aW3.

根據(jù)不等式組解集的定義可知,不等式X-3>0的解集與不等式x-a<0的解集無公共部分,從

而可得一個關(guān)于a的不等式,求出此不等式的解集,即可得出a的取值范圍.

本題考查的是一元一次不等式組,關(guān)鍵不要漏掉a=3.

12.【答案】30?;?0。

【解析】解:???△4BC是等邊三角形,4D平分NBAC,

1

4DAB=^BAC=30°,

.?.當(dāng)ZP=BP時,ABAP=AABP=30°,

???乙CBP=60°-30°=30°.

當(dāng)4B=BP時,ABAP=Z.BPA=30°,

4ABp=180°-30°-30°=120°,

???AABC=60°,

???/.CBP=乙ABP-乙ABC=120°-60°=60°.

故答案為:30?;?0。.

根據(jù)等邊三角形等腰三角形的性質(zhì)解答即可.

本題考查的是等腰三角形和等邊三角形的性質(zhì),關(guān)鍵是弄清P的位置有兩種情況,一一解答即可.

13.【答案】解:原方程兩邊同乘(無一2),去分母得:l-(x-2)=-3,

去括號得:1—比+2=—3,

移項,合并同類項得:-工=—6,

系數(shù)化為1得:x=6,

檢驗:將x=6代入。-2)得:6-2=40,

故原分式方程的解為:%=6.

【解析】根據(jù)解分式方程的步驟解方程后進行檢驗即可.

本題考查解分式方程,特別注意解分式方程時必須進行檢驗.

14.【答案】解:?.?DE14B,AB=8,△4BD的面積為8,

2X8

“.DE-_2SRABD-_k-_2?,

???/0平分/DELAB,DFLAC,

??.DE=DF=2,

???AADC的面積=^AC-DF=^X6X2=6,

.?.△ACD的面積=6+8=14.

【解析】根據(jù)三角形的面積公式得出DE,進而利用角平分線的性質(zhì)得出DF,進而解答即可.

此題考查角平分線的性質(zhì),關(guān)鍵是利用角平分線的性質(zhì)得出。尸解答.

15.【答案】解:(1)原式=(久-y)(a2-。2)

=(%-y)(a+b)(a-b);

(2)原式=(無一y—5產(chǎn)

【解析】(1)提公因式后利用平方差公式因式分解即可;

(2)利用完全平方公式因式分解即可.

本題考查因式分解,熟練掌握因式分解的方法是解題的關(guān)鍵.

16.【答案】解:???甘一14竽,

???2(2%-1)-6<3(5%+1),

4%—2—6415%+3,

4x—15%<3+2+6,

-llx<11,

X>-1,

則不等式的非正整數(shù)解為-1、0.

【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.

本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注

意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.

17.【答案】(1)如圖所示,點F即為所求;

【解析】(1)連接2D,與BC相交于點,再連接E0并延長交CD于點尸,根據(jù)平行四邊形的性質(zhì)得到

OB=0C,又BE=AE,由三角形的中位線性質(zhì)。E〃4C,即EF//2C;

(2)分別連接2D,CE相交于點M,連接BM并延長交2C于點P,可得出2。與CE是4BC的中線,且

交于點M,由三角形三條中線交于一點可得8P也是△ABC的中線,又由BA=BC可得BP平分N2BC.

本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何

圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的

基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作,也考查了平行四邊形的性質(zhì)、三角形的中位線

性質(zhì)、等腰三角形的性質(zhì)等知識.

18.【答案】4B〃CD(答案不唯一)

【解析】(1)解:只添加一個條件:4B〃CD(不唯一),

???AB=CD,AB//CD,

???四邊形4BCD為平行四邊形,

故答案為:48〃CD(答案不唯一);

(2)證明:如圖,

AfD

E

BC

???BE1AC,DF1AC,

/.BE//DF,ABEA=ADFC=90°,

vAB//CD,

z_BAE=Z-DCF,

在△BAE和△DCF中,

ZBEA=乙DFC

乙BAE=乙DCF,

AB=CD

:^BAE=^DCF(AAS^

BE=DF,

又???BE//DF,

.?.四邊形BEDF是平行四邊形.

(1)由平行四邊形的判定即可得出結(jié)論;

(2)證B£7/DF,再證BAE三ADCFOMS),得BE=DF,然后由平行四邊形的判定即可得出結(jié)論.

本題考查了平行四邊形的判定、全等三角形的判定與性質(zhì)以及平行線的判定等知識,熟練掌握平

行四邊形的判定和全等三角形的判定與性質(zhì)是解題的關(guān)鍵.

19.【答案】③能—6

【解析】解:(1)由題目中的解答過程可知,第③步開始出現(xiàn)錯誤,

正確的過程如下:

Hi.(x+3)(x—3)2x4-3-.x+3

原式=r[飛訪——而].W

_「%—32x4-3-.%+3

-l-x+3一%+3」?耳

_X—3—2%—3x+3

x+3—3x

——%—6x+3

x+3—3x

-_-x+--6,

3x

故答案為:③;

(2)令號=0,

3x

解得x=-6,

當(dāng)x=-6時,原分式有意義,

該分式的值能等于0,此時x的值為-6,

故答案為:能,—6.

(1)根據(jù)題目中的解答過程可知,第③步開始出現(xiàn)錯誤,然后根據(jù)分式的運算法則寫出正確的解答

過程即可;

(2)令(1)中的結(jié)果等于0,求出相應(yīng)的x的值,再觀察此時x的值是否使得原分式有意義即可.

本題考查分式的混合運算,熟練掌握運算法則是解答本題的關(guān)鍵,注意分式有意義需要滿足的條

件.

20.【答案】解:(1)設(shè)市場上每捆8種菜苗的價格是x元,則市場上每捆力種菜苗的價格是1.5K元,

根據(jù)題意得:--^=2,

x1.5久

解得:x=50,

經(jīng)檢驗,x=50是原方程的解,且符合題意,

1.5%=1.5X50=75,

答:市場上每捆4種菜苗的價格是75元,每捆B種菜苗的價格是50元;

(2)設(shè)購買4種菜苗小捆,則購買B種菜苗(100-爪)捆,

由題意得:75m+50(100-m)<6000,

解得:m<40,

答:最多可以購買4種菜苗40捆.

【解析】(1)設(shè)市場上每捆B種菜苗的價格是x元,則市場上每捆2種菜苗的價格是1.5久元,根據(jù)用

300元購買4種菜苗的數(shù)量比用同樣價格購買B種菜苗的數(shù)量少2捆.列出分式方程,解方程即可;

(2)設(shè)購買4種菜苗加捆,則購買B種菜苗(100-zn)捆,根據(jù)總費用不超過6000元,列出一元一次

不等式,解不等式即可.

本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確

列出分式方程;(2)找出數(shù)量關(guān)系,正確列出一元一次不等式.

21.【答案】9

【解析】教材再現(xiàn):(1)證明:???/C_Lb,BD1b,

:?AC“BD,

va//b,

???四邊形4CDB是平行四邊形,

??.AC=BD(平行四邊形的對邊相等);

知識延伸:(2)證明:在和中,分另U作DF1BC,垂足分別為E,F.

???^AEF=乙DFC=90°,

:.AE//DF,

-AD//BC,

???四邊形/EFD是平行四邊形,

???AE=DF,

11

丁^^ABC=《BC?AE,S^DBC=qBC?DF,

???^LABC=S^DBC;

知識應(yīng)用:(3)解:如圖②,過點E作EF1CD于點尸,連接4尸,

???EF1CD,CE=DE,

???4DFE=90。,點尸是DC的中點,

??,AD=DC=6,

1

.??DF=/C=3,

在正方形/BCO中,

???AADC=90°,

???Z-DFE=Z.ADC,

??.EF//AD,

???點E與點F到4D邊距離相等,

11

?**S>ADE=S?ADF~2AD,DF=—x6x3=9.

故答案為:9.

教材再現(xiàn):(1)根據(jù)平行四邊形的判定與性質(zhì)即可完成證明;

知識延伸:(2)證明四邊形AEFD是平行四邊形,得=進而可以解決問題;

知識應(yīng)用:(3)過點E作EF1于點F,連接/用利用等腰三角形三線合一的性質(zhì)可證E77/4D,

則SMDE=S^ADF=^AD-DF,由此可解?

本題是四邊形綜合題,考查等腰三角形三線合一的性質(zhì)、正方形的性質(zhì)、平行線的判定與性質(zhì)、

三角形面積公式等知識點,利用平行線之間的距離處處相等,將所求三角形面積進行轉(zhuǎn)化是解題

的關(guān)鍵.

22.【答案】±30-3大15

【解析】解:(1)由題意,根據(jù)完全平方公式a?±2ab+爐=(a±b)2,

又9——kxy+25y2=(3x)2—kxy+(5y)2是一個完全平方式,

k—+2x3x5.

???k=+30.

故答案為:±30.

(2)由題意,根據(jù)十字相乘法可得,原式=(a—6)(a+2).

(3)由題意,—/—6%+6=—+6%+9—9)+6

=-(x+3)2+9+6

=一(%+3/+15.

又一(久+3)2<。(當(dāng)x=-3時等號成立),

???一(久+3/+15<15.

當(dāng)%=-3時,代數(shù)式—/—6%+6有最大值為15.

故答案為:—3;大;15.

(1)依據(jù)題意,根據(jù)完全平方公式a?±2ab+次=(a±b}2,進而判斷可以得解;

(2)依據(jù)題意,根據(jù)十字相乘法可以進行因式分解進而得解;

(3)依據(jù)題意,將代數(shù)式-久2—6x+6用完全平方公式配方后可以判斷得解.

本題主要考查了因式分解的應(yīng)用,解題時要熟練掌握并理解.

23.【答案】(一3,2)

【解析】(1)證明:???NB=NC=90°,

:.△ABP^\LCP。是直角三角形,

^.RtABP^WRthCPD^P,

(PA=PD

=PC'

???Rt△ABPzRt△CPD(HL),

???BP=CD,

??,BC=BP+PC,

???BC=AB+CD;

(2)解:如圖②,過點。作。聞1%軸于點M,

???△ABC是等腰直角三角形,

/.Z.CAB=90°,AC=AB,

???/.CAM+乙BAO=90°,

??,CM1%軸于點M,

???Z.CMA=90°,

???/,CAM+AACM=90°,

???Z.ACM=Z-BAO,

在△ACM和△BA。中,

\LCMA=AAOB=90°

/-ACM=乙BAO,

AC=AB

???△ACM三△BA0(44S),

ACM=OA,MA=OB,

???A(—2,0),8(0,1),

:.OA=2,OB=1,

???CM=2,MA=1,

???OM=MA+OA=3,

AC(-3,2),

故答案為:(-3,2);

(3)解:如圖③,過點4作于E,過點。作。于F,

圖③

由(1)可知,EF^AE+DF,

■:NB=NC=45°,AE1BC,DF1BC,

:.Z5=4BAE=45°,ZC=乙CDF=45°,

???BE=AE,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論