山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省泰安寧陽縣聯(lián)考2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°2.不等式組的解集為.則的取值范圍為()A. B. C. D.3.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.44.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.5.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°6.七年級1班甲、乙兩個小組的14名同學(xué)身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學(xué)身高的眾數(shù)是160B.乙組同學(xué)身高的中位數(shù)是161C.甲組同學(xué)身高的平均數(shù)是161D.兩組相比,乙組同學(xué)身高的方差大7.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體8.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.69.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶10.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.11.某班要推選學(xué)生參加學(xué)校的“詩詞達人”比賽,有7名學(xué)生報名參加班級選拔賽,他們的選拔賽成績各不相同,現(xiàn)取其中前3名參加學(xué)校比賽.小紅要判斷自己能否參加學(xué)校比賽,在知道自己成績的情況下,還需要知道這7名學(xué)生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差12.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標(biāo)分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線(為非零實數(shù))的頂點坐標(biāo)為_____________.14.中國的《九章算術(shù)》是世界現(xiàn)代數(shù)學(xué)的兩大源泉之一,其中有一問題:“今有牛五,羊二,值金十兩.牛二,羊五,值金八兩。問牛羊各值金幾何?”譯文:今有牛5頭,羊2頭,共值金10兩,牛2頭,羊5頭,共值金8兩.問牛、羊每頭各值金多少?設(shè)牛、羊每頭各值金兩、兩,依題意,可列出方程為___________________.15.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.16.因式分解a3-6a2+9a=_____.17.如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結(jié)果保留根號).18.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點O.以O(shè)為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,AB與⊙O的位置關(guān)系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.20.(6分)如圖是8×8的正方形網(wǎng)格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.21.(6分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標(biāo);已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.22.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.23.(8分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.24.(10分)解方程式:-3=25.(10分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.26.(12分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.27.(12分)“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.2、B【解析】

求出不等式組的解集,根據(jù)已知得出關(guān)于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應(yīng)用,解此題的關(guān)鍵是能根據(jù)不等式組的解集和已知得出關(guān)于k的不等式,難度適中.3、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉(zhuǎn);2.勾股定理.4、B【解析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.5、B【解析】

延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.6、D【解析】

根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學(xué)身高的眾數(shù)是160,此選項正確;B.乙組同學(xué)身高的中位數(shù)是161,此選項正確;C.甲組同學(xué)身高的平均數(shù)是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計算公式是解題的關(guān)鍵.7、D【解析】

本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.8、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.9、C【解析】解:設(shè)正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質(zhì),根據(jù)已知利用解直角三角形知識求出正六邊形面積是解題的關(guān)鍵.10、B【解析】

根據(jù)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側(cè),絕對值大的反而?。?1、B【解析】

由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,只需知道中位數(shù)即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,故應(yīng)知道中位數(shù)是多少.故選B.【點睛】本題考查了統(tǒng)計的有關(guān)知識,掌握平均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解題的關(guān)鍵.12、C【解析】

首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點的坐標(biāo)來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當(dāng)x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側(cè),則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標(biāo)應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點,二次函數(shù)圖象上點的坐標(biāo)特征等知識點的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負是解此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標(biāo).【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標(biāo)為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標(biāo),把拋物線的解析式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.14、【解析】【分析】牛、羊每頭各值金兩、兩,根據(jù)等量關(guān)系:“牛5頭,羊2頭,共值金10兩”,“牛2頭,羊5頭,共值金8兩”列方程組即可.【詳解】牛、羊每頭各值金兩、兩,由題意得:,故答案為:.【點睛】本題考查了二元一次方程組的應(yīng)用,弄清題意,找出等量關(guān)系列出方程組是關(guān)鍵.15、-1【解析】

利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內(nèi),y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

,

的值可以取等,答案不唯一

故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.16、a(a-3)2【解析】

根據(jù)因式分解的方法與步驟,先提取公因式,再根據(jù)完全平方公式分解即可.【詳解】解:故答案為:.【點睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關(guān)鍵.17、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應(yīng)用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質(zhì),等腰三角形的性質(zhì),解本題的關(guān)鍵是求出∠ANB=45°.18、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)作圖見解析;綜合運用:(1)相切;(2)⊙O的半徑為.【解析】

綜合運用:(1)根據(jù)角平分線上的點到角兩邊的距離相等可得AB與⊙O的位置關(guān)系是相切;(2)首先根據(jù)勾股定理計算出AB的長,再設(shè)半徑為x,則OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【詳解】(1)①作∠BAC的平分線,交BC于點O;②以O(shè)為圓心,OC為半徑作圓.AB與⊙O的位置關(guān)系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,設(shè)半徑為x,則OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半徑為.【點睛】本題考查了1.作圖—復(fù)雜作圖;2.角平分線的性質(zhì);3.勾股定理;4.切線的判定.20、見解析【解析】

根據(jù)菱形的四條邊都相等,兩條對角線互相垂直平分,可以根據(jù)正方形的四邊垂直,將小正方形的邊作為對角線畫菱形;也可以畫出以AB為邊長的正方形,據(jù)此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法;解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質(zhì)是解題的關(guān)鍵.21、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】

(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標(biāo),然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時,1=k+k,解得k=,∴≤k≤,當(dāng)k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,k的取值范圍是≤k≤或k=﹣1.【點睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.22、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當(dāng)60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.23、(1)詳見解析;(2)詳見解析.【解析】

(1)用“SSS”證明即可;(2)借助全等三角形的性質(zhì)及角的和差求出∠DAB=∠EAC,再利用三角形內(nèi)角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.【詳解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌△ADE,則∠D=∠B,∠DAE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論