山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省青島39中重點達標名校2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°2.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.3.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間4.計算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.5.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.6.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學(xué)記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×1067.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.88.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<39.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設(shè)∠CAB=α,那么拉線BC的長度為()A. B. C. D.10.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.111.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應(yīng)點的坐標為()A. B.或C. D.或12.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.14.在一個暗箱里放有a個除顏色外其他完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.25,那么可以推算出a大約是_________.15.如圖,在平行四邊形中,點在邊上,將沿折疊得到,點落在對角線上.若,,,則的周長為________.16.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.17.已知點A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關(guān)系是:y1__y2;18.|-3|=_________;三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.20.(6分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結(jié)合以上信息,回答下列問題:求服裝項目的權(quán)數(shù)及普通話項目對應(yīng)扇形的圓心角大??;求李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);根據(jù)你所學(xué)的知識,幫助學(xué)校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.21.(6分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.22.(8分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.

解:因為直線可變形為,其中,所以點到直線的距離為:.根據(jù)以上材料,求:點到直線的距離,并說明點P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.23.(8分)計算:+2〡6tan3024.(10分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.25.(10分)如圖,在平面直角坐標系xOy中,直線與函數(shù)的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.26.(12分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).27.(12分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.2、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.3、B【解析】∵9<11<16,∴,∴故選B.4、D【解析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎(chǔ)題型.明白冪的計算法則是解決這個問題的關(guān)鍵.5、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.6、B【解析】.故選B.點睛:在把一個絕對值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).7、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.8、B【解析】

設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關(guān)鍵.9、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應(yīng)用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關(guān)鍵.10、A【解析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.11、B【解析】分析:根據(jù)位似變換的性質(zhì)計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應(yīng)點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質(zhì),在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或-k.12、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】試題分析:由中線性質(zhì),可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學(xué)生容易蒙對的.考點:中線的性質(zhì).14、12【解析】

在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,根據(jù)紅球的個數(shù)除以總數(shù)等于頻率,求解即可.【詳解】∵摸到紅球的頻率穩(wěn)定在0.25,

∴解得:a=12故答案為:12【點睛】此題主要考查了利用頻率估計概率,解答此題的關(guān)鍵是利用紅球的個數(shù)除以總數(shù)等于頻率.15、6.【解析】

先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長.【詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長計算方法,運用轉(zhuǎn)化思想是解題的關(guān)鍵.16、40°.【解析】

∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.17、>【解析】

根據(jù)反比例函數(shù)的性質(zhì)求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了反比例函數(shù)的性質(zhì).18、1【解析】分析:根據(jù)負數(shù)的絕對值等于這個數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)8;(2)1.【解析】

(1)由平行四邊形的性質(zhì)和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進而可求出BC的長;(2)由平行四邊形的性質(zhì):對角線互相平分可求出AO+OD的長,進而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定以及全等三角形的性質(zhì),能夠根據(jù)平行四邊形的性質(zhì)證明三角形全等,再根據(jù)全等三角形的性質(zhì)將所求的線段轉(zhuǎn)化為已知的線段是解題的關(guān)鍵.20、(1)服裝項目的權(quán)數(shù)是10%,普通話項目對應(yīng)扇形的圓心角是72°;(2)眾數(shù)是85,中位數(shù)是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,理由見解析.【解析】

(1)根據(jù)扇形圖用1減去其它項目的權(quán)重可求得服裝項目的權(quán)重,用360度乘以普通話項目的權(quán)重即可求得普通話項目對應(yīng)扇形的圓心角大??;(2)根據(jù)統(tǒng)計表中的數(shù)據(jù)可以求得李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計圖和統(tǒng)計表中的數(shù)據(jù)可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權(quán)數(shù)是:1﹣20%﹣30%﹣40%=10%,普通話項目對應(yīng)扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數(shù)的眾數(shù)是85,中位數(shù)是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽.【點睛】本題考查了扇形統(tǒng)計圖、中位數(shù)、眾數(shù)、加權(quán)平均數(shù),明確題意,結(jié)合統(tǒng)計表和統(tǒng)計圖找出所求問題需要的條件,運用數(shù)形結(jié)合的思想進行解答是解題的關(guān)鍵.21、探究:證明見解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;

應(yīng)用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結(jié)論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應(yīng)用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根據(jù)勾股定理得,DE=,

∴△DCE的周長為CD+CE+DE=2+

故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案為BC=CE-CD.22、(1)點P在直線上,說明見解析;(2).【解析】

解:(1)求:(1)直線可變?yōu)?,說明點P在直線上;(2)在直線上取一點(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.23、10【解析】

根據(jù)實數(shù)的性質(zhì)進行化簡即可計算.【詳解】原式=9-1+2-+6×=10-=10【點睛】此題主要考查實數(shù)的計算,解題的關(guān)鍵是熟知實數(shù)的性質(zhì).24、(1)證明見解析(2)【解析】

(1)連結(jié)OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據(jù)平行線的性質(zhì)得OD⊥CE,然后根據(jù)切線的判定定理得到結(jié)論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設(shè)BD=k,AD=2k

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論