版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省嶧城區(qū)底閣鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)押題卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,過點(diǎn)B作PB⊥BC于B,交AC于P,過點(diǎn)C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ2.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大3.如圖,分別以等邊三角形ABC的三個頂點(diǎn)為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.24.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機(jī)取出一顆棋子,取得白色棋子的概率是,如再往盒中放進(jìn)3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆5.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣16.如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣7.從3、1、-2這三個數(shù)中任取兩個不同的數(shù)作為P點(diǎn)的坐標(biāo),則P點(diǎn)剛好落在第四象限的概率是()A. B. C. D.8.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=09.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.310.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.10二、填空題(共7小題,每小題3分,滿分21分)11.若m+=3,則m2+=_____.12.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點(diǎn)O;(2)以點(diǎn)O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.13.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點(diǎn)B,C,E在同一條直線上,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),則CH的長為________.14.飛機(jī)著陸后滑行的距離S(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機(jī)著陸后滑行_____秒停下.15.若關(guān)于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當(dāng)m=1、2、3、…、2018時,相應(yīng)的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.16.如圖,的頂點(diǎn)落在兩條平行線上,點(diǎn)D、E、F分別是三邊中點(diǎn),平行線間的距離是8,,移動點(diǎn)A,當(dāng)時,EF的長度是______.17.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點(diǎn)P在圓B上移動,連接AP,并將AP繞點(diǎn)A逆時針旋轉(zhuǎn)90°至Q,連接BQ,在點(diǎn)P移動過程中,BQ長度的最小值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點(diǎn),過點(diǎn)G作DE⊥BC,垂足為E,交BA的延長線于點(diǎn)D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.19.(5分)某中學(xué)開學(xué)初到商場購買A、B兩種品牌的足球,購買A種品牌的足球20個,B種品牌的足球30個,共花費(fèi)4600元,已知購買4個B種品牌的足球與購買5個A種品牌的足球費(fèi)用相同.(1)求購買一個A種品牌、一個B種品牌的足球各需多少元.(2)學(xué)校為了響應(yīng)“足球進(jìn)校園”的號召,決定再次購進(jìn)A、B兩種品牌足球共42個,正好趕上商場對商品價格進(jìn)行調(diào)整,A品牌足球售價比第一次購買時提高5元,B品牌足球按第一次購買時售價的9折出售,如果學(xué)校此次購買A、B兩種品牌足球的總費(fèi)用不超過第一次花費(fèi)的80%,且保證這次購買的B種品牌足球不少于20個,則這次學(xué)校有哪幾種購買方案?(3)請你求出學(xué)校在第二次購買活動中最多需要多少資金?20.(8分)如圖,是的直徑,是圓上一點(diǎn),弦于點(diǎn),且.過點(diǎn)作的切線,過點(diǎn)作的平行線,兩直線交于點(diǎn),的延長線交的延長線于點(diǎn).(1)求證:與相切;(2)連接,求的值.21.(10分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.22.(10分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計圖表.征文比賽成績頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計1請根據(jù)以上信息,解決下列問題:(1)征文比賽成績頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎?wù)魑牡钠獢?shù).23.(12分)如圖,平面直角坐標(biāo)系中,直線與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn).求反比例函數(shù)的表達(dá)式;若點(diǎn)C在反比例函數(shù)的圖象上,點(diǎn)D在x軸上,當(dāng)四邊形ABCD是平行四邊形時,求點(diǎn)D的坐標(biāo).24.(14分)雅安地震,某地駐軍對道路進(jìn)行清理.該地駐軍在清理道路的工程中出色完成了任務(wù).這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務(wù)的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)三角形高線的定義即可解題.【詳解】解:當(dāng)AB為△ABC的底時,過點(diǎn)C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點(diǎn)睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關(guān)鍵.2、A【解析】分析:根據(jù)平均數(shù)的計算公式進(jìn)行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點(diǎn)睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.3、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.4、B【解析】試題解析:由題意得,解得:.故選B.5、B【解析】
根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【點(diǎn)睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.6、D【解析】
首先根據(jù)矩形的性質(zhì),可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進(jìn)而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點(diǎn)睛】本題考查了矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用.7、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點(diǎn)落在第四項(xiàng)象限,∴P點(diǎn)剛好落在第四象限的概率==.故選B.點(diǎn)睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點(diǎn)的符號特點(diǎn)是解題的關(guān)鍵.8、B【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負(fù)半軸,∴,∴,故A正確;當(dāng)x=1時,,即,故B錯誤;當(dāng)x=-1時,即,∴,故C正確,故答案為:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,解題的關(guān)鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).9、D【解析】
直接利用提取公因式法以及冪的乘方運(yùn)算法則將原式變形進(jìn)而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點(diǎn)睛】此題主要考查了冪的乘方運(yùn)算,正確將原式變形是解題關(guān)鍵.10、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.二、填空題(共7小題,每小題3分,滿分21分)11、7【解析】分析:把已知等式兩邊平方,利用完全平方公式化簡,即可求出答案.詳解:把m+=3兩邊平方得:(m+)2=m2++2=9,則m2+=7,故答案為:7點(diǎn)睛:此題考查了分式的混合運(yùn)算,以及完全平方公式,熟練掌握運(yùn)算法則及公式是解本題的關(guān)鍵.12、正方形的對角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個圓上;四邊形的四個頂點(diǎn)在同一個圓上,這個圓叫四邊形的外接圓.【解析】
利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點(diǎn)O為圓心,OA長為半徑作⊙O,點(diǎn)B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個圓上;四邊形的四個頂點(diǎn)在同一個圓上,這個圓叫四邊形的外接圓.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.13、【解析】
連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點(diǎn)∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點(diǎn)∴.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.14、1【解析】
飛機(jī)停下時,也就是滑行距離最遠(yuǎn)時,即在本題中需求出s最大時對應(yīng)的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時,飛機(jī)才能停下來.故答案為1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用.解題時,利用配方法求得t=2時,s取最大值.15、.【解析】
利用根與系數(shù)的關(guān)系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關(guān)系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.16、1【解析】
過點(diǎn)D作于點(diǎn)H,根等腰三角形的性質(zhì)求得BD的長度,繼而得到,結(jié)合三角形中位線定理求得EF的長度即可.【詳解】解:如圖,過點(diǎn)D作于點(diǎn)H,
過點(diǎn)D作于點(diǎn)H,,
.
又平行線間的距離是8,點(diǎn)D是AB的中點(diǎn),
,
在直角中,由勾股定理知,.
點(diǎn)D是AB的中點(diǎn),
.
又點(diǎn)E、F分別是AC、BC的中點(diǎn),
是的中位線,
.
故答案是:1.【點(diǎn)睛】考查了三角形中位線定理和平行線的性質(zhì),解題的關(guān)鍵是根據(jù)平行線的性質(zhì)求得DH的長度.17、3﹣1【解析】
通過畫圖發(fā)現(xiàn),點(diǎn)Q的運(yùn)動路線為以D為圓心,以1為半徑的圓,可知:當(dāng)Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當(dāng)Q在對角線BD上時,BQ最小.連接BP,由旋轉(zhuǎn)得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【點(diǎn)睛】本題是圓的綜合題.考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和最小值問題,尋找點(diǎn)Q的運(yùn)動軌跡是本題的關(guān)鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點(diǎn),∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點(diǎn)睛】本題考查了相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì).19、(1)購買一個A種品牌的足球需要50元,購買一個B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元.【解析】試題分析:(1)、設(shè)A種品牌足球的單價為x元,B種品牌足球的單價為y元,根據(jù)題意列出二元一次方程組,從而求出x和y的值得出答案;(2)、設(shè)第二次購買A種足球m個,則購買B種足球(50-m)個,根據(jù)題意列出不等式組求出m的取值范圍,從而得出答案;(3)、分別求出第二次購買時足球的單件,然后得出答案.試題解析:(1)設(shè)A種品牌足球的單價為x元,B種品牌足球的單價為y元,解得(2)設(shè)第二次購買A種足球m個,則購買B種足球(50-m)個,解得25≤m≤27∵m為整數(shù)∴m=25、26、27(3)∵第二次購買足球時,A種足球單價為50+4=54(元),B種足球單價為80×0.9=72∴當(dāng)購買B種足球越多時,費(fèi)用越高此時25×54+25×72=3150(元)20、(1)見解析;(2)【解析】
(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點(diǎn).設(shè),則,.根據(jù)兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數(shù)的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點(diǎn),∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點(diǎn).設(shè),則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【點(diǎn)睛】本題考查圓的綜合問題,涉及切線的判定與性質(zhì),菱形的判定與性質(zhì),等邊三角形的性質(zhì)及銳角三角函數(shù),考查學(xué)生綜合運(yùn)用知識的能力,熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.21、(1)證明見解析;(2)【解析】試題分析:(1)過點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;
(2)連接OF,依據(jù)垂徑定理可知BE=EF=1,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.試題解析:(1)證明:過點(diǎn)O作OG⊥DC,垂足為G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切線.
(2)如圖所示:連接OF.
∵OA⊥BC,
∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.
∴tan∠ABC=.【點(diǎn)睛】本題主要考查的是切線的判定、垂徑定理、勾股定理的應(yīng)用、銳角三角函數(shù)的定義,掌握本題的輔助線的作法是解題的關(guān)鍵.22、(1)0.2;(2)答案見解析;(3)300【解析】
第一問,根據(jù)頻率的和為1,求出c的值;第二問,先用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年金融機(jī)構(gòu)間協(xié)議存款結(jié)算服務(wù)合同3篇
- 2025年度個人資產(chǎn)反擔(dān)保業(yè)務(wù)合同范本3篇
- 二零二五版旅游度假村客房租賃與管理服務(wù)協(xié)議4篇
- 二零二五年度門店合伙人員工招聘與培訓(xùn)協(xié)議4篇
- 二零二五版門衛(wèi)人員夜間值班安全協(xié)議2篇
- 全國醫(yī)療機(jī)構(gòu)感染監(jiān)測網(wǎng) -2024全球感染預(yù)防與控制報告
- 新建農(nóng)溝施工方案
- 2025年度金融產(chǎn)品銷售會議服務(wù)合同范本3篇
- 二零二五年度智能倉儲物流系統(tǒng)開發(fā)與應(yīng)用合同4篇
- 2025年度個人藝術(shù)品鑒定與評估合同書(專家團(tuán)隊版)4篇
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2024年城市軌道交通設(shè)備維保及安全檢查合同3篇
- 【教案】+同一直線上二力的合成(教學(xué)設(shè)計)(人教版2024)八年級物理下冊
- 湖北省武漢市青山區(qū)2023-2024學(xué)年七年級上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(含解析)
- 單位往個人轉(zhuǎn)賬的合同(2篇)
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國式摔跤課程學(xué)生運(yùn)動能力測評規(guī)范
- 高危妊娠的評估和護(hù)理
- 2023年高考全國甲卷數(shù)學(xué)(理)試卷【含答案】
- 數(shù)獨(dú)題目A4打印版無答案
- 自建房承包施工合同
評論
0/150
提交評論