泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

泰安市重點(diǎn)中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線y=x2+bx+c的對稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個相等的實(shí)數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=42.已知關(guān)于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣53.據(jù)資料顯示,地球的海洋面積約為360000000平方千米,請用科學(xué)記數(shù)法表示地球海洋面積面積約為多少平方千米()A. B. C. D.4.觀察圖中的“品”字形中個數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.1395.下列實(shí)數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個6.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.7.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°8.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關(guān)系為()A. B.C. D.9.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.310.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠2二、填空題(本大題共6個小題,每小題3分,共18分)11.計(jì)算a10÷a5=_______.12.某市對九年級學(xué)生進(jìn)行“綜合素質(zhì)”評價,評價結(jié)果分為A,B,C,D,E五個等級.現(xiàn)隨機(jī)抽取了500名學(xué)生的評價結(jié)果作為樣本進(jìn)行分析,繪制了如圖所示的統(tǒng)計(jì)圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為_____人.13.分解因式:mx2﹣4m=_____.14.若x2+kx+81是完全平方式,則k的值應(yīng)是________.15.如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線AB上的一個動點(diǎn),則PM的最小值為________.16.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點(diǎn)B的直線折疊三角形,使點(diǎn)C落在AB邊的點(diǎn)E處,折痕為BD.則△AED的周長為____cm.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當(dāng)△CPE是等腰三角形時,請直接寫出m的值.18.(8分)計(jì)算:2cos30°+--()-219.(8分)如圖,直線l切⊙O于點(diǎn)A,點(diǎn)P為直線l上一點(diǎn),直線PO交⊙O于點(diǎn)C、B,點(diǎn)D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.20.(8分)解下列不等式組:21.(8分)已知:如圖,AB=AC,點(diǎn)D是BC的中點(diǎn),AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.22.(10分)九年級學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達(dá)百花公園,先到了幾分鐘?23.(12分)小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們?nèi)嗽谕粋€半天去游玩的概率.24.一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;(2)當(dāng)銷售單價為多少時,銷售利潤最大?最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實(shí)數(shù)根,當(dāng)△=0時,即c=4,此時x=2,滿足題意.當(dāng)△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當(dāng)c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當(dāng)c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點(diǎn)睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.2、B【解析】

根據(jù)關(guān)于x的方程x2+3x+a=0有一個根為-2,可以設(shè)出另一個根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個根的值,本題得以解決.【詳解】∵關(guān)于x的方程x2+3x+a=0有一個根為-2,設(shè)另一個根為m,

∴-2+m=?,

解得,m=-1,

故選B.3、B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).詳解:將360000000用科學(xué)記數(shù)法表示為:3.6×1.故選:B.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、A【解析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.5、B【解析】

根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.【點(diǎn)睛】本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).6、B【解析】

根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.7、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計(jì)算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補(bǔ).8、C【解析】

首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內(nèi)角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結(jié)果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點(diǎn)睛】本題考查了圓周角定理及其逆定理和三角形的內(nèi)角和定理,掌握相關(guān)知識進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.9、D【解析】

解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.10、D【解析】

根據(jù)分式的分母不等于0即可解題.【詳解】解:∵代數(shù)式有意義,∴x-2≠0,即x≠2,故選D.【點(diǎn)睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點(diǎn):同底數(shù)冪的除法.12、16000【解析】

用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學(xué)生所占的比即可求得結(jié)果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計(jì)圖中的高之比為2:3:3:1:1,∴該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為80000×=16000,故答案為16000.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖的應(yīng)用,讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù).13、m(x+2)(x﹣2)【解析】

提取公因式法和公式法相結(jié)合因式分解即可.【詳解】原式故答案為【點(diǎn)睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.14、±1【解析】試題分析:利用完全平方公式的結(jié)構(gòu)特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點(diǎn):完全平方式.15、【解析】

認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點(diǎn)P作PM⊥AB,則:∠PMB=90°,當(dāng)PM⊥AB時,PM最短,因?yàn)橹本€y=x﹣3與x軸、y軸分別交于點(diǎn)A,B,可得點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.16、7【解析】

根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),翻折前后對應(yīng)邊相等,對應(yīng)角相等.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當(dāng)PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.18、5【解析】

根據(jù)實(shí)數(shù)的計(jì)算,先把各數(shù)化簡,再進(jìn)行合并即可.【詳解】原式==5【點(diǎn)睛】此題主要考查實(shí)數(shù)的計(jì)算,解題的關(guān)鍵是熟知特殊三角函數(shù)的化簡與二次根式的運(yùn)算.19、(1)見解析;(2)AC=1.【解析】

(1)要證明DB為⊙O的切線,只要證明∠OBD=90即可.(2)根據(jù)已知及直角三角形的性質(zhì)可以得到PD=2BD=2DA=2,再利用等角對等邊可以得到AC=AP,這樣求得AP的值就得出了AC的長.【詳解】(1)證明:連接OD;∵PA為⊙O切線,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB為⊙O的切線(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【點(diǎn)睛】本題考查了切線的判定及性質(zhì),全等三全角形的判定等知識點(diǎn)的掌握情況.20、﹣2≤x<.【解析】

先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點(diǎn)睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).21、見解析【解析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結(jié)合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點(diǎn)D是BC的中點(diǎn),∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.22、;(2)騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學(xué)生和騎自行車學(xué)生到達(dá)百花公園的時間,從而可以解答本題.【詳解】解:(1)設(shè)關(guān)于的函數(shù)解析式是,,得,即關(guān)于的函數(shù)解析式是;(2)由圖象可知,步行的學(xué)生的速度為:千米/分鐘,步行同學(xué)到達(dá)百花公園的時間為:(分鐘),當(dāng)時,,得,,答:騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.23、(1);(2)【解析】

(1)根據(jù)題意,畫樹狀圖列出三人隨機(jī)選擇上午或下午去游玩的所有等可能結(jié)果,找到小明和小剛都在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論