版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
上海市浦東新區(qū)涇南中學2023-2024學年十校聯(lián)考最后數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.2.已知為單位向量,=,那么下列結(jié)論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反3.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結(jié)論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個4.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=25.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.6.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.227.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=68.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是()A. B. C. D.9.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°10.關于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是10二、填空題(本大題共6個小題,每小題3分,共18分)11.鼓勵科技創(chuàng)新、技術(shù)發(fā)明,北京市2012-2017年專利授權(quán)量如圖所示.根據(jù)統(tǒng)計圖中提供信息,預估2018年北京市專利授權(quán)量約______件,你的預估理由是______.12.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.13.因式分解:a2﹣a=_____.14.計算:(π﹣3)0+(﹣)﹣1=_____.15.已知ba=216.已知反比例函數(shù),在其圖象所在的每個象限內(nèi),的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.三、解答題(共8題,共72分)17.(8分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設甲的騎行時間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數(shù)解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.18.(8分)如圖①,一次函數(shù)y=x﹣2的圖象交x軸于點A,交y軸于點B,二次函數(shù)y=x2+bx+c的圖象經(jīng)過A、B兩點,與x軸交于另一點C.(1)求二次函數(shù)的關系式及點C的坐標;(2)如圖②,若點P是直線AB上方的拋物線上一點,過點P作PD∥x軸交AB于點D,PE∥y軸交AB于點E,求PD+PE的最大值;(3)如圖③,若點M在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點M的坐標.19.(8分)如圖,在中,,為邊上的中線,于點E.求證:;若,,求線段的長.20.(8分)在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.21.(8分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).22.(10分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.23.(12分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).24.某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.2、C【解析】
由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎題,較簡單.3、B【解析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結(jié)論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.4、C【解析】分析:根據(jù)每個選項所涉及的數(shù)學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經(jīng)過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學知識,是正確解答本題的關鍵.5、A【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.
故選:A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.6、D【解析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關鍵.7、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.8、D【解析】
兩個同心圓被均分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,由此計算出黑色區(qū)域的面積,利用幾何概率的計算方法解答即可.【詳解】因為兩個同心圓等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中黑色區(qū)域的面積占了其中的四等份,所以P(飛鏢落在黑色區(qū)域)==.故答案選:D.【點睛】本題考查了幾何概率,解題的關鍵是熟練的掌握幾何概率的相關知識點.9、C【解析】
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關鍵.10、A【解析】
根據(jù)方差、算術(shù)平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術(shù)平均數(shù);中位數(shù);眾數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、113407,北京市近兩年的專利授權(quán)量平均每年增加6458.5件.【解析】
依據(jù)北京市近兩年的專利授權(quán)量的增長速度,即可預估2018年北京市專利授權(quán)量.【詳解】解:∵北京市近兩年的專利授權(quán)量平均每年增加:(件),∴預估2018年北京市專利授權(quán)量約為106948+6458.5≈113407(件),故答案為:113407,北京市近兩年的專利授權(quán)量平均每年增加6458.5件.【點睛】此題考查統(tǒng)計圖的意義,解題的關鍵在于看懂圖中數(shù)據(jù).12、【解析】
先利用△ABC為等腰直角三角形得到AB=1,再設圓錐的底面圓的半徑為r,則根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2πr=,然后解方程即可.【詳解】∵⊙O的直徑BC=,
∴AB=BC=1,
設圓錐的底面圓的半徑為r,
則2πr=,解得r=,
即圓錐的底面圓的半徑為米故答案為.13、a(a﹣1)【解析】
直接提取公因式a,進而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點睛】此題考查公因式,難度不大14、-1【解析】
先計算0指數(shù)冪和負指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數(shù)冪和負指數(shù)冪,解題關鍵是運用任意數(shù)的0次冪為1,a-1=.15、3【解析】
依據(jù)ba=23可設a=3k,b=2【詳解】∵ba∴可設a=3k,b=2k,∴aa-b故答案為3.【點睛】本題主要考查了比例的性質(zhì)及見比設參的數(shù)學思想,組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項.16、【解析】
直接利用反比例函數(shù)的增減性進而得出圖象的分布.【詳解】∵反比例函數(shù)y(k≠0),在其圖象所在的每個象限內(nèi),y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【點睛】本題考查了反比例的性質(zhì),正確掌握反比例函數(shù)圖象的分布規(guī)律是解題的關鍵.三、解答題(共8題,共72分)17、(1)18,2,20(2)(3)當y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據(jù)路程、時間、速度三者間的關系通過計算即可求得相應答案;(Ⅱ)根據(jù)路程=速度×時間結(jié)合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據(jù)題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出發(fā),當時間x=1.8時,甲離開A的距離是10×1.8=18(km),當甲離開A的距離20km時,甲的行駛時間是20÷10=2(時),此時乙行駛的時間是2﹣1.5=0.5(時),所以乙離開A的距離是40×0.5=20(km),故填寫下表:(Ⅱ)由題意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根據(jù)題意,得,當0≤x≤1.5時,由10x=12,得x=1.2,當1.5<x≤2時,由﹣30x+60=12,得x=1.6,因此,當y=12時,x的值是1.2或1.6.【點睛】本題考查了一次函數(shù)的應用,理清題意,弄清各數(shù)量間的關系是解題的關鍵.18、(1)二次函數(shù)的關系式為y=;C(1,0);(2)當m=2時,PD+PE有最大值3;(3)點M的坐標為(,)或(,).【解析】
(1)先求出A、B的坐標,然后把A、B的坐標分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;(2)先證明△PDE∽△OAB,得到PD=2PE.設P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結(jié)論.(3)分兩種情況討論:①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.求出圓心O1的坐標和半徑,利用MO1=半徑即可得到結(jié)論.②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.求出點O2的坐標,算出DM的長,即可得到結(jié)論.【詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數(shù)y=的圖像經(jīng)過A、B兩點,∴,解得:,∴二次函數(shù)的關系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當m=2時,PD+PE有最大值3.(3)①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對稱軸上,設圓心O1的坐標為(,-t).∴=,解得:t=2,∴圓心O1的坐標為(,-2),∴半徑為.設M(,y).∵MO1=,∴,解得:y=,∴點M的坐標為().②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點O2的坐標為(,0),∴O2D=1,∴DM==,∴點M的坐標為(,).綜上所述:點M的坐標為(,)或(,).點睛:本題是二次函數(shù)的綜合題.考查了求二次函數(shù)的解析式,求二次函數(shù)的最值,圓的有關性質(zhì).難度比較大,解答第(3)問的關鍵是求出△ABC外接圓的圓心坐標.19、(1)見解析;(2).【解析】
對于(1),由已知條件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性質(zhì)易得AD⊥BC,∠ADC=90°;接下來不難得到∠ADC=∠BED,至此問題不難證明;對于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【詳解】解:(1)證明:∵,∴.又∵為邊上的中線,∴.∵,∴,∴.(2)∵,∴.在中,根據(jù)勾股定理,得.由(1)得,∴,即,∴.【點睛】此題考查相似三角形的判定與性質(zhì),解題關鍵在于掌握判定定理.20、證明見解析.【解析】
連接OE,由OB=OD和AB=AC可得,則OF∥AC,可得,由圓周角定理和等量代換可得,由SAS證得,從而得到,即可證得結(jié)論.【詳解】證明:如圖,連接,∵,∴,∵,∴,∴,∴,∴∵∴,則,∴,∴,即,在和中,∵,∴,∴∵是的切線,則,∴,∴,則,∴是的切線.【點睛】本題主要考查了等腰三角形的性質(zhì)、切線的性質(zhì)和判定、圓周角定理和全等三角形的判定與性質(zhì),熟練掌握圓周角定理和全等三角形的判定與性質(zhì)是解題的關鍵.21、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】
如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內(nèi)角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據(jù)三角形內(nèi)角和得到∠1+∠2+∠BOC=180°,利用等式的性質(zhì)進行變換可得∠BOC=90°+∠A,然后根據(jù)此結(jié)論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù):①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.22、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省晉城市部分學校2024-2025學年高二上學期12月月考英語試卷(含答案無聽力原文及音頻)
- 江蘇省鹽城市潘黃實驗學校 蘇科版物理八年級上冊 八年級第一學期期末質(zhì)量檢測物 理(含答案)
- 河北省邢臺市部分高中2024-2025學年高三(上)期末物理試卷(含答案)
- 2024版海鮮干貨購銷合同范本
- 2024版辦公室保潔人員雇傭協(xié)議
- 2024精簡版聘用協(xié)議:高效規(guī)范格式版
- 福建省南平市劍津中學高一數(shù)學文月考試卷含解析
- 2024年一級造價師之建設工程技術(shù)與計量(交通)題庫含答案(a卷)
- 2024特色農(nóng)業(yè)產(chǎn)品銷售合同標的
- 2024版醫(yī)院合同管理規(guī)定
- 2025年四川長寧縣城投公司招聘筆試參考題庫含答案解析
- 2024年06月上海廣發(fā)銀行上海分行社會招考(622)筆試歷年參考題庫附帶答案詳解
- TSG 51-2023 起重機械安全技術(shù)規(guī)程 含2024年第1號修改單
- 計算機科學導論
- 浙江省杭州市錢塘區(qū)2023-2024學年四年級上學期英語期末試卷
- 《工程勘察設計收費標準》(2002年修訂本)
- 2024年一級消防工程師《消防安全技術(shù)綜合能力》考試真題及答案解析
- 2024-2025學年六上科學期末綜合檢測卷(含答案)
- 安徽省森林撫育技術(shù)導則
- 2023七年級英語下冊 Unit 3 How do you get to school Section A 第1課時(1a-2e)教案 (新版)人教新目標版
- 泌尿科主任述職報告
評論
0/150
提交評論