2024屆阿壩市重點中學中考考前最后一卷數學試卷含解析_第1頁
2024屆阿壩市重點中學中考考前最后一卷數學試卷含解析_第2頁
2024屆阿壩市重點中學中考考前最后一卷數學試卷含解析_第3頁
2024屆阿壩市重點中學中考考前最后一卷數學試卷含解析_第4頁
2024屆阿壩市重點中學中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆阿壩市重點中學中考考前最后一卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的相反數是()A.2 B.﹣2 C.4 D.﹣2.我國古代數學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.3.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數表示超過標準質量的克數,負數表示不足標準質量的克數.僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+54.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+15.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)6.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數,則(6,5)與(13,6)表示的兩數之積是()A. B.6 C. D.7.在平面直角坐標系中,二次函數y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.8.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數是()A.75° B.65° C.60° D.50°9.在一組數據:1,2,4,5中加入一個新數3之后,新數據與原數據相比,下列說法正確的是()A.中位數不變,方差不變 B.中位數變大,方差不變C.中位數變小,方差變小 D.中位數不變,方差變小10.下列各式計算正確的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△AOB繞點按逆時針方向旋轉后得到,若,則的度數是_______.12.肥皂泡的泡壁厚度大約是,用科學記數法表示為_______.13.已知同一個反比例函數圖象上的兩點、,若,且,則這個反比例函數的解析式為______.14.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數,作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.15.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數為_____度.16.分解因式:mx2﹣6mx+9m=_____.17.如圖,⊙C經過原點且與兩坐標軸分別交于點A與點B,點B的坐標為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標是_____.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉,得正方形BE′F′G′,記旋轉角為α(0°<α<360°),連接AG′.①在旋轉過程中,當∠BAG′=90°時,求α的大??;②在旋轉過程中,求AF′的長取最大值時,點F′的坐標及此時α的大?。ㄖ苯訉懗鼋Y果即可).19.(5分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?20.(8分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.21.(10分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現,每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結算,每份套餐的售價(元)取整數,用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.22.(10分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.23.(12分)《孫子算經》是中國傳統(tǒng)數學的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”24.(14分)學校決定從甲、乙兩名同學中選拔一人參加“誦讀經典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數是______,乙成績的眾數是______;經計算知,.請你求出甲的方差,并從平均數和方差的角度推薦參加比賽的合適人選.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:根據只有符號不同的兩個數是互為相反數解答即可.詳解:的相反數是,即2.故選A.點睛:本題考查了相反數的定義,解答本題的關鍵是熟練掌握相反數的定義,正數的相反數是負數,0的相反數是0,負數的相反數是正數.2、C【解析】

根據題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據正三角形的面積,正n邊形的性質解答.3、B【解析】

求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【點睛】本題考查了正數和負數,掌握正數和負數的定義以及意義是解題的關鍵.4、A【解析】

原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.5、B【解析】解:作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最?。咚倪呅蜛BOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.6、B【解析】

根據數的排列方法可知,第一排:1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,根據題目意思找出第m排第n個數到底是哪個數后再計算.【詳解】第一排1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,由此可知:(1,5)表示第1排從左向右第5個數是,(13,1)表示第13排從左向右第1個數,可以看出奇數排最中間的一個數都是1,第13排是奇數排,最中間的也就是這排的第7個數是1,那么第1個就是,則(1,5)與(13,1)表示的兩數之積是1.故選B.7、B【解析】

根據題目給出的二次函數的表達式,可知二次函數的開口向下,即可得出答案.【詳解】二次函數y=a(x﹣h)2+k(a<0)二次函數開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數性質,解題的關鍵是熟練掌握二次函數性質.8、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數,又因為∠B=∠C,所以∠C的度數可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

9、D【解析】

根據中位數和方差的定義分別計算出原數據和新數據的中位數和方差,從而做出判斷.【詳解】∵原數據的中位數是2+42=3,平均數為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數據的中位數為3,平均數為1+2+3+【點睛】本題考查了中位數和方差,解題的關鍵是掌握中位數和方差的定義.10、C【解析】

根據合并同類項、冪的乘方、同底數冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、60°【解析】

根據題意可得,根據已知條件計算即可.【詳解】根據題意可得:,故答案為60°【點睛】本題主要考查旋轉角的有關計算,關鍵在于識別那個是旋轉角.12、7×10-1.【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】0.0007=7×10-1.故答案為:7×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.13、y=【解析】解:設這個反比例函數的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數圖象上點的坐標特征,所有在反比例函數上的點的橫縱坐標的積應等于比例系數.同時考查了式子的變形.14、88【解析】試題分析:根據筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).15、1【解析】

根據線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【點睛】本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.16、m(x﹣3)1.【解析】

先把m提出來,然后對括號里面的多項式用公式法分解即可?!驹斀狻縨=m(=m【點睛】解題的關鍵是熟練掌握因式分解的方法。17、(,)【解析】

連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據∠BMO=120°可求出∠BAO以及∠BCO的度數,在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關系及圓周角定理、直角三角形的性質、坐標與圖形的性質及特殊角的三角函數值,根據題意畫出圖形,作出輔助線,利用數形結合求解是解答此題的關鍵.三、解答題(共7小題,滿分69分)18、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F′(+,﹣)【解析】

(1)根據正方形的性質以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉角α=30°,據對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉角α=30°,根據對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉角α=150°,綜上所述,旋轉角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F′(+,﹣)【點睛】本題考查的是正方形的性質、旋轉變換的性質以及銳角三角函數的定義,解決本題的關鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉變換的性質以及特殊角的三角函數值的應用.19、(1)2000;(2)2米【解析】

(1)設未知數,根據題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據題意得:﹣=4解得:x=2000,經檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.20、(1)作圖見解析;(2)證明見解析.【解析】

(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;

(2)根據線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據等邊對等角的性質求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關鍵.21、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】

(1)、根據利潤=(售價-進價)×數量-固定支出列出函數表達式;(2)、根據題意得出不等式,從而得出答案;(2)、根據題意得出函數關系式,然后將y=1560代入函數解析式,從而求出x的值得出答案.【詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價x(元)取整數,∴每份套餐的售價應不低于9元.(2)依題意可知:每份套餐售價提高到10元以上時,y=(x﹣5)[400﹣40(x﹣10)]﹣2,當y=1560時,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應取x1=11,即x2=14不符合題意.故該套餐售價應定為11元.【點睛】本題主要考查的是一次函數和二次函數的實際應用問題,屬于中等難度的題型.理解題意,列出關系式是解決這個問題的關鍵.22、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論