版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年寶雞市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.2.已知兩點,,則()A. B. C. D.3.某校有高一學(xué)生450人,高二學(xué)生480人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校高一高二學(xué)生中抽取一個容量為n的樣本,已知從高一學(xué)生中抽取15人,則n為()A.15 B.16 C.30 D.314.函數(shù)的最小正周期是()A. B. C. D.5.已知滿足條件,則目標(biāo)函數(shù)的最小值為A.0 B.1 C. D.6.某幾何體的直觀圖如圖所示,是的直徑,垂直所在的平面,且,為上從出發(fā)繞圓心逆時針方向運動的一動點.若設(shè)弧的長為,的長度為關(guān)于的函數(shù),則的圖像大致為()A. B.C. D.7.已知是常數(shù),如果函數(shù)的圖像關(guān)于點中心對稱,那么的最小值為()A. B. C. D.8.?dāng)?shù)列中,,且,則數(shù)列前2019項和為()A. B. C. D.9.函數(shù)的部分圖象如圖,則()()A.0 B. C. D.610.連續(xù)拋擲一枚質(zhì)地均勻的硬幣10次,若前4次出現(xiàn)正面朝上,則第5次出現(xiàn)正面朝上的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.12.已知數(shù)列,若對任意正整數(shù)都有,則正整數(shù)______;13.函數(shù)的值域是________.14.若,,則的值為______.15.已知等差數(shù)列中,,則_______16.已知數(shù)列的通項公式是,若將數(shù)列中的項從小到大按如下方式分組:第一組:,第二組:,第三組:,…,則2018位于第________組.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.已知向量,,函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在中,內(nèi)角、、所對邊的長分別是、、,若,,,求的面積.19.已知數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.20.已知數(shù)列前項和為,,且滿足().(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,設(shè)數(shù)列前項和為,求證:.21.在中,,,,解三角形.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎(chǔ)題.2、C【解析】
直接利用兩點間距離公式求解即可.【詳解】因為兩點,,則,故選.【點睛】本題主要考查向量的模,兩點間距離公式的應(yīng)用.3、D【解析】
根據(jù)分層抽樣的定義和性質(zhì)進(jìn)行求解即可.【詳解】根據(jù)分層抽樣原理,列方程如下,n450+480解得n=1.故選:D.【點睛】本題主要考查分層抽樣的應(yīng)用,根據(jù)條件建立比例關(guān)系是解決本題的關(guān)鍵.4、C【解析】
將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎(chǔ)題.5、C【解析】作出不等式區(qū)域如圖所示:求目標(biāo)函數(shù)的最小值等價于求直線的最小縱截距.平移直線經(jīng)過點A(-2,0)時最小為-2.故選C.6、A【解析】如圖所示,設(shè),則弧長,線段,作于當(dāng)在半圓弧上運動時,,,即,由余弦函數(shù)的性質(zhì)知當(dāng)時,即運動到點時有最小值,只有選項適合,又由對稱性知選,故選A.7、C【解析】
將點的坐標(biāo)代入函數(shù)的解析式,得出,求出的表達(dá)式,可得出的最小值.【詳解】由于函數(shù)的圖象關(guān)于點中心對稱,則,,則,因此,當(dāng)時,取得最小值,故選C.【點睛】本題考查余弦函數(shù)的對稱性,考查初相絕對值的最小值,解題時要結(jié)合題中條件求出初相的表達(dá)式,結(jié)合表達(dá)式進(jìn)行計算,考查分析問題和解決問題的能力,屬于中等題.8、B【解析】
由,可得,化為:,利用“累加求和”方法可得,再利用裂項求和法即可得解.【詳解】解:∵,∴,整理得:,∴,又∴,可得:.則數(shù)列前2019項和為:.故選B.【點睛】本題主要考查了數(shù)列遞推關(guān)系、“累加求和”方法、裂項求和,考查了推理能力、轉(zhuǎn)化能力與計算能力,屬于中檔題.9、D【解析】
先利用正切函數(shù)求出A,B兩點的坐標(biāo),進(jìn)而求出與的坐標(biāo),再代入平面向量數(shù)量積的運算公式即可求解.【詳解】因為y=tan(x)=0?xkπ?x=4k+2,由圖得x=2;故A(2,0)由y=tan(x)=1?xk?x=4k+3,由圖得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故選D.【點睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運算,考查了利用正切函數(shù)值求角的運算,解決本題的關(guān)鍵在于求出A,B兩點的坐標(biāo),屬于基礎(chǔ)題.10、D【解析】
拋擲一枚質(zhì)地均勻的硬幣有兩種情況,正面朝上和反面朝上的概率都是,與拋擲次數(shù)無關(guān).【詳解】解:拋擲一枚質(zhì)地均勻的硬幣,有正面朝上和反面朝上兩種可能,概率均為,與拋擲次數(shù)無關(guān).故選:D.【點睛】本題考查了概率的求法,考查了等可能事件及等可能事件的概率知識,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應(yīng)用,屬于基礎(chǔ)題.12、9【解析】
分析數(shù)列的單調(diào)性,以及數(shù)列各項的取值正負(fù),得到數(shù)列中的最大項,由此即可求解出的值.【詳解】因為,所以時,,時,,又因為在上遞增,在也是遞增的,所以,又因為對任意正整數(shù)都有,所以.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性以及數(shù)列中項的正負(fù)判斷,難度一般.處理數(shù)列單調(diào)性或者最值的問題時,可以采取函數(shù)的思想來解決問題,但是要注意到數(shù)列對應(yīng)的函數(shù)的定義域為.13、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因為函數(shù),當(dāng)時是單調(diào)減函數(shù)當(dāng)時,;當(dāng)時,所以在上的值域為根據(jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域為故答案為:【點睛】本題求一個反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識,屬于基礎(chǔ)題.14、【解析】
求出,將展開即可得解.【詳解】因為,,所以,所以.【點睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎(chǔ)題.15、【解析】
設(shè)等差數(shù)列的公差為,用與表示等式,再用與表示代數(shù)式可得出答案?!驹斀狻吭O(shè)等差數(shù)列的公差為,則,因此,,故答案為:?!军c睛】本題考查等差數(shù)列中項的計算,解決等差數(shù)列有兩種方法:基本性質(zhì)法(與下標(biāo)相關(guān)的性質(zhì))以及基本量法(用首項和公差來表示相應(yīng)的量),一般利用基本量法來進(jìn)行計算,此外,靈活利用與下標(biāo)有關(guān)的基本性質(zhì)進(jìn)行求解,能簡化計算,屬于中等題。16、1【解析】
根據(jù)題意可分析第一組、第二組、第三組、…中的數(shù)的個數(shù)及最后的數(shù),從中尋找規(guī)律使問題得到解決.【詳解】根據(jù)題意:第一組有2=1×2個數(shù),最后一個數(shù)為4;第二組有4=2×2個數(shù),最后一個數(shù)為12,即2×(2+4);第三組有6=2×3個數(shù),最后一個數(shù)為24,即2×(2+4+6);…∴第n組有2n個數(shù),其中最后一個數(shù)為2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴當(dāng)n=31時,第31組的最后一個數(shù)為2×31×1=1984,∴當(dāng)n=1時,第1組的最后一個數(shù)為2×1×33=2112,∴2018位于第1組.故答案為1.【點睛】本題考查觀察與分析問題的能力,考查歸納法的應(yīng)用,從有限項得到一般規(guī)律是解決問題的關(guān)鍵點,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項公式;(2)根據(jù)前項和公式,即可求出結(jié)果.【詳解】(1)依題意,設(shè)等差數(shù)列的公差為,因為,所以,又,所以公差,所以.(2)由(1)知,,所以【點睛】本題主要考查等差數(shù)列,熟記等差數(shù)列的通項公式與前項和公式即可,屬于基礎(chǔ)題型.18、(1)的增區(qū)間是,(2)【解析】
(1)利用平面向量數(shù)量積的坐標(biāo)表示公式、二倍角的正弦公式、余弦二倍角的降冪公式、以及輔助角公式可以函數(shù)的解析式化為正弦型函數(shù)解析式的形式,最后利用正弦型函數(shù)的單調(diào)性求出函數(shù)的單調(diào)遞增區(qū)間;(2)根據(jù)(1)所得的結(jié)論和,可以求出角的值,利用三角形內(nèi)角和定理可以求出角的值,再運用正弦定理可得出的值,最后利用三角形面積公式可以求出的面積..【詳解】(1)令,解得∴的增區(qū)間是,(2)∵∴解得又∵∴中,由正弦定理得∴【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)表示公式,考查了二倍角的正弦公式、余弦二倍角的降冪公式、以及輔助角公式,考查了正弦定理和三角形面積公式,考查了數(shù)學(xué)運算能力.19、(1)(2)(3)見解析【解析】
(1)根據(jù)和項與通項關(guān)系得,再根據(jù)等比數(shù)列定義與通項公式求解(2)先化簡,再根據(jù)恒成立思想求的值(3)根據(jù)和項得,再作差得,最后根據(jù)等差數(shù)列定義證明.【詳解】(1),所以,由得時,,兩式相減得,,,數(shù)列是以2為首項,公比為的等比數(shù)列,所以.(2)若數(shù)列是常數(shù)列,為常數(shù).只有,解得,此時.(3)①,,其中,所以,當(dāng)時,②②式兩邊同時乘以得,③①式減去③得,,所以,因為,所以數(shù)列是以為首項,公差為的等差數(shù)列.【點睛】本題考查利用和項求通項、等差數(shù)列定義以及利用恒成立思想求參數(shù),考查基本分析論證與求解能力,屬中檔題20、(Ⅰ)(Ⅱ)詳見解析【解析】【試題分析】(1)借助遞推關(guān)系式,運用等比數(shù)列的定義分析求解;(2)依據(jù)題設(shè)條件運用列項相消求和法進(jìn)行求解:(Ⅰ),由()
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司工作計劃六篇
- 2022年小學(xué)教師工作計劃
- 護(hù)士長每周工作計劃
- 2024年農(nóng)村廣播電視行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報告
- 事故賠償協(xié)議書匯編五篇
- 參觀類實習(xí)報告模板合集九篇
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)思維與行動 課件 第五章 創(chuàng)業(yè)思維概述
- 市場方案策劃模板錦集五篇
- 會計實習(xí)周記格式5篇
- -護(hù)士長述職報告
- 管理學(xué)基礎(chǔ)知識點總結(jié)(精華)
- 谷文昌精神報告會稿件課件
- 生產(chǎn)計劃與排程(英文)課件
- 內(nèi)墻涂料工程監(jiān)理實施辦法
- 如何識別早期休克
- 危險化學(xué)品MSDS(聚乙烯)
- DB32∕T 3216-2017 機(jī)動車駕駛員培訓(xùn)機(jī)構(gòu)服務(wù)規(guī)范
- DB22∕T 2880-2018 建筑消防設(shè)施維護(hù)保養(yǎng)規(guī)程
- 進(jìn)化生物學(xué)第3版課后習(xí)題答案
- 2022年新媒體編輯實戰(zhàn)教程試題帶答案(題庫)
- 在一日活動中培養(yǎng)幼兒親社會行為的實踐研究報告
評論
0/150
提交評論