版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆吉林省舒蘭市第九大區(qū)中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.62.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°3.如圖,長(zhǎng)度為10m的木條,從兩邊各截取長(zhǎng)度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m4.小王拋一枚質(zhì)地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.5.把拋物線y=﹣2x2向上平移1個(gè)單位,再向右平移1個(gè)單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣16.三角形兩邊的長(zhǎng)是3和4,第三邊的長(zhǎng)是方程x2-12x+35=0的根,則該三角形的周長(zhǎng)為()A.14 B.12 C.12或14 D.以上都不對(duì)7.如圖,PB切⊙O于點(diǎn)B,PO交⊙O于點(diǎn)E,延長(zhǎng)PO交⊙O于點(diǎn)A,連結(jié)AB,⊙O的半徑OD⊥AB于點(diǎn)C,BP=6,∠P=30°,則CD的長(zhǎng)度是()A. B. C. D.28.甲隊(duì)修路120m與乙隊(duì)修路100m所用天數(shù)相同,已知甲隊(duì)比乙隊(duì)每天多修10m,設(shè)甲隊(duì)每天修路xm.依題意,下面所列方程正確的是A.B. C.D.9.運(yùn)用圖形變化的方法研究下列問(wèn)題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.10.已知點(diǎn)A(0,﹣4),B(8,0)和C(a,﹣a),若過(guò)點(diǎn)C的圓的圓心是線段AB的中點(diǎn),則這個(gè)圓的半徑的最小值是()A. B. C. D.2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知實(shí)數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為_(kāi)_.12.如圖,AB∥CD,BE交CD于點(diǎn)D,CE⊥BE于點(diǎn)E,若∠B=34°,則∠C的大小為_(kāi)_______度.13.如圖,如果四邊形ABCD中,AD=BC=6,點(diǎn)E、F、G分別是AB、BD、AC的中點(diǎn),那么△EGF面積的最大值為_(kāi)____.14.如圖,BC=6,點(diǎn)A為平面上一動(dòng)點(diǎn),且∠BAC=60°,點(diǎn)O為△ABC的外心,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點(diǎn)P,則OP的最小值是_____15.已知,如圖,正方形ABCD的邊長(zhǎng)是8,M在DC上,且DM=2,N是AC邊上的一動(dòng)點(diǎn),則DN+MN的最小值是_____.16.如圖,為了測(cè)量某棵樹(shù)的高度,小明用長(zhǎng)為2m的竹竿做測(cè)量工具,移動(dòng)竹竿,使竹竿、樹(shù)的頂端的影子恰好落在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)距離相距6m,與樹(shù)相距15m,則樹(shù)的高度為_(kāi)________m.三、解答題(共8題,共72分)17.(8分)問(wèn)題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使△APD為等腰三角形,那么請(qǐng)畫出滿足條件的一個(gè)等腰三角形△APD,并求出此時(shí)BP的長(zhǎng);(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng);問(wèn)題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來(lái)監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問(wèn)在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請(qǐng)求出符合條件的DM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.18.(8分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF(1)判斷AF與⊙O的位置關(guān)系并說(shuō)明理由;(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).19.(8分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時(shí)發(fā)現(xiàn)公交車上還有A,B,W三個(gè)空座位,且只有A,B兩個(gè)座位相鄰,若三人隨機(jī)選擇座位,試解決以下問(wèn)題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹(shù)狀圖的方法求甲、乙選擇相鄰座位A,B的概率.20.(8分)已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長(zhǎng);②拋物線與的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長(zhǎng)為4,求a的值;(3)若拋物線的“完美三角形”斜邊長(zhǎng)為n,且的最大值為-1,求m,n的值.21.(8分)求拋物線y=x2+x﹣2與x軸的交點(diǎn)坐標(biāo).22.(10分)如圖,我們把一個(gè)半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點(diǎn),直線與“果圓”中的拋物線交于兩點(diǎn)(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長(zhǎng);(2)如圖,為直線下方“果圓”上一點(diǎn),連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點(diǎn),使,如果存在,直接寫出點(diǎn)坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由23.(12分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.24.如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當(dāng)∠B=時(shí),四邊形OCAD是菱形;②當(dāng)∠B=時(shí),AD與相切.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:∵am=2,an=3,
∴a3m+2n
=a3m?a2n
=(am)3?(an)2
=23×32
=8×9
=1.故選C.2、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點(diǎn)睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.3、C【解析】
依據(jù)題意,三根木條的長(zhǎng)度分別為xm,xm,(10-2x)m,在根據(jù)三角形的三邊關(guān)系即可判斷.【詳解】解:由題意可知,三根木條的長(zhǎng)度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點(diǎn)睛】本題主要考察了三角形三邊的關(guān)系,關(guān)鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對(duì)值小于第三邊.4、B【解析】
直接利用概率的意義分析得出答案.【詳解】解:因?yàn)橐幻顿|(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點(diǎn)睛】此題主要考查了概率的意義,明確概率的意義是解答的關(guān)鍵.5、B【解析】
∵函數(shù)y=-2x2的頂點(diǎn)為(0,0),∴向上平移1個(gè)單位,再向右平移1個(gè)單位的頂點(diǎn)為(1,1),∴將函數(shù)y=-2x2的圖象向上平移1個(gè)單位,再向右平移1個(gè)單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點(diǎn)睛】二次函數(shù)的平移不改變二次項(xiàng)的系數(shù);關(guān)鍵是根據(jù)上下平移改變頂點(diǎn)的縱坐標(biāo),左右平移改變頂點(diǎn)的橫坐標(biāo)得到新拋物線的頂點(diǎn).6、B【解析】
解方程得:x=5或x=1.當(dāng)x=1時(shí),3+4=1,不能組成三角形;當(dāng)x=5時(shí),3+4>5,三邊能夠組成三角形.∴該三角形的周長(zhǎng)為3+4+5=12,故選B.7、C【解析】
連接OB,根據(jù)切線的性質(zhì)與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質(zhì)與三角函數(shù)得到OC的長(zhǎng),即可得到CD的長(zhǎng).【詳解】解:如圖,連接OB,∵PB切⊙O于點(diǎn)B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點(diǎn)睛】本題主要考查切線的性質(zhì)與銳角的三角函數(shù),解此題的關(guān)鍵在于利用切線的性質(zhì)得到相關(guān)線段與角度的值,再根據(jù)圓和等腰三角形的性質(zhì)求解即可.8、A【解析】分析:甲隊(duì)每天修路xm,則乙隊(duì)每天修(x-10)m,因?yàn)榧?、乙兩?duì)所用的天數(shù)相同,所以,。故選A。9、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長(zhǎng),證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點(diǎn)睛】本題考查扇形面積的計(jì)算,圓周角定理.本題中找出兩個(gè)陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.10、B【解析】
首先求得AB的中點(diǎn)D的坐標(biāo),然后求得經(jīng)過(guò)點(diǎn)D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點(diǎn)坐標(biāo),再求得交點(diǎn)與D之間的距離即可.【詳解】AB的中點(diǎn)D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過(guò)D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點(diǎn)的坐標(biāo)是(3,-3).則這個(gè)圓的半徑的最小值是:=.
故選:B【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1【解析】試題分析:根據(jù)非負(fù)數(shù)的性質(zhì)可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.12、56【解析】
解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.13、4.1.【解析】
取CD的值中點(diǎn)M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.【詳解】解:取CD的值中點(diǎn)M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點(diǎn)睛】本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關(guān)鍵.14、【解析】試題分析:如圖,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴點(diǎn)P在以BC為直徑的圓上,∵外心為O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以O(shè)P的最小值是.故答案為.考點(diǎn):1.三角形的外接圓與外心;2.全等三角形的判定與性質(zhì).15、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點(diǎn)B和點(diǎn)D關(guān)于直線AC對(duì)稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長(zhǎng)是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點(diǎn)評(píng):考查正方形的性質(zhì)和軸對(duì)稱及勾股定理等知識(shí)的綜合應(yīng)用.16、7【解析】設(shè)樹(shù)的高度為m,由相似可得,解得,所以樹(shù)的高度為7m三、解答題(共8題,共72分)17、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運(yùn)用三角形全等、矩形的性質(zhì)、勾股定理等知識(shí)即可解決問(wèn)題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點(diǎn)Q唯一,然后通過(guò)添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識(shí)即可求出BQ長(zhǎng).(4)要滿足∠AMB=40°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點(diǎn)就是滿足條件的點(diǎn),然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識(shí),就可算出符合條件的DM長(zhǎng).【詳解】(1)①作AD的垂直平分線交BC于點(diǎn)P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點(diǎn)D為圓心,AD為半徑畫弧,交BC于點(diǎn)P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點(diǎn)A為圓心,AD為半徑畫弧,交BC于點(diǎn)P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點(diǎn),∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過(guò)點(diǎn)O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點(diǎn)為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過(guò)點(diǎn)E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當(dāng)∠EQF=90°時(shí),BQ的長(zhǎng)為4+.(4)在線段CD上存在點(diǎn)M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設(shè)GP與AK交于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,過(guò)點(diǎn)O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設(shè)交點(diǎn)為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點(diǎn)M在點(diǎn)H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點(diǎn)M不在線段CD上,應(yīng)舍去.若點(diǎn)M在點(diǎn)H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點(diǎn)M在線段CD上.綜上所述:在線段CD上存在唯一的點(diǎn)M,使∠AMB=40°,此時(shí)DM的長(zhǎng)為(200-25-40)米.【點(diǎn)睛】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關(guān)系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識(shí),考查了操作、探究等能力,綜合性非常強(qiáng).而構(gòu)造等邊三角形及其外接圓是解決本題的關(guān)鍵.18、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對(duì)應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點(diǎn):1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).19、(1);(2)【解析】
(1)根據(jù)概率公式計(jì)算可得;(2)畫樹(shù)狀圖列出所有等可能結(jié)果,從中找到符合要求的結(jié)果數(shù),利用概率公式計(jì)算可得.【詳解】解:(1)由于共有A、B、W三個(gè)座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹(shù)狀圖如下:由圖可知,共有6種等可能結(jié)果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點(diǎn)睛】此題考查了樹(shù)狀圖法求概率.注意樹(shù)狀圖法適合兩步或兩步以上完成的事件,樹(shù)狀圖法可以不重不漏的表示出所有等可能的結(jié)果,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設(shè)出點(diǎn)B的坐標(biāo)為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因?yàn)閽佄锞€y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點(diǎn)B的坐標(biāo),得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長(zhǎng)為n得出點(diǎn)B的坐標(biāo),然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡(jiǎn)得mn-4m-1=0,拋物線的“完美三角形”斜邊長(zhǎng)為n,所以拋物線2的“完美三角形”斜邊長(zhǎng)為n,得出B點(diǎn)坐標(biāo),代入可得mn關(guān)系式,即可求出m、n的值.【詳解】(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設(shè)B點(diǎn)坐標(biāo)為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴B點(diǎn)坐標(biāo)為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長(zhǎng)為n,∴拋物線的“完美三角形”斜邊長(zhǎng)為n,∴B點(diǎn)坐標(biāo)為,∴代入拋物線,得,∴(不合題意舍去),∴,∴21、(1,0)、(﹣2,0)【解析】試題分析:拋物線與x軸交點(diǎn)的縱坐標(biāo)等于零,由此解答即可.試題解析:解:令,即.解得:,.∴該拋物線與軸的交點(diǎn)坐標(biāo)為(-2,0),(1,0).22、(1);6;(2)有最小值;(3),.【解析】
(1)先求出點(diǎn)B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進(jìn)而求出點(diǎn)A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點(diǎn)D的坐標(biāo)即可求出BD;
(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個(gè)交點(diǎn),求出直線EG解析式,即可求出CG,結(jié)論得證.
(3)求出線段AC,BC進(jìn)而判斷出滿足條件的一個(gè)點(diǎn)P和點(diǎn)B重合,再利用拋物線的對(duì)稱性求出另一個(gè)點(diǎn)P.【詳解】解:(1)對(duì)于直線y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵拋物線y=x2+bx+c過(guò)B,C兩點(diǎn),∴∴∴拋物線的解析式為y=;令y=0,
∴=0,∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如圖2,記半圓的圓心為O',連接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,∴D(0,2),
∴BD=2-(-3)=5;(2)如圖3,
∵A(-1,0),C(4,0),
∴AC=5,
過(guò)點(diǎn)E作EG∥BC交x軸于G,
∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,
∴S△ABF=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)車車輛驅(qū)動(dòng)電機(jī)性能分析考核試卷
- 藥品零售行業(yè)法規(guī)動(dòng)態(tài)分析-洞察分析
- 依賴關(guān)系在機(jī)器學(xué)習(xí)中的應(yīng)用-洞察分析
- 2023-2024學(xué)年四川省樂(lè)山市高二上學(xué)期期末考試生物試題(解析版)
- 高三下學(xué)期工作計(jì)劃
- 行業(yè)服務(wù)標(biāo)準(zhǔn)化建設(shè)-洞察分析
- 新型疫苗佐劑研究進(jìn)展-洞察分析
- 拼音教學(xué)心得體會(huì)
- 2024年員工三級(jí)安全培訓(xùn)考試題審定
- 2023年-2024年新員工入職安全教育培訓(xùn)試題考題
- 基本光刻工藝流程
- 胸腔閉式引流護(hù)理-2023年中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)
- 高中體育足球教學(xué)教案 全冊(cè)
- 藝術(shù)概論P(yáng)PT完整全套教學(xué)課件
- 社團(tuán)啦啦操訓(xùn)練計(jì)劃
- 2023-2024學(xué)年四川省雅安市小學(xué)語(yǔ)文二年級(jí)期末評(píng)估試題詳細(xì)參考答案解析
- UPS維護(hù)保養(yǎng)檢查表
- 英語(yǔ)人教新目標(biāo)七年級(jí)上冊(cè)微課PPT
- 2023年安全生產(chǎn)先進(jìn)集體申報(bào)表
- 碼頭裝卸作業(yè)風(fēng)險(xiǎn)辨識(shí)表
- 國(guó)家電網(wǎng)安全生產(chǎn)典型違章300條(含扣分)
評(píng)論
0/150
提交評(píng)論