版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭州市英特外國語學校2022年中考數學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+52.某班為獎勵在學校運動會上取得好成績的同學,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.3.如果一組數據6,7,x,9,5的平均數是2x,那么這組數據的中位數為()A.5 B.6 C.7 D.94.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數為()A.30° B.36° C.54° D.72°5.已知一次函數y=ax﹣x﹣a+1(a為常數),則其函數圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四6.不透明袋子中裝有一個幾何體模型,兩位同學摸該模型并描述它的特征.甲同學:它有4個面是三角形;乙同學:它有8條棱.該模型的形狀對應的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐7.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數互為相反數,那么圖中的值是().A. B. C. D.8.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°9.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙10.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正△ABC的邊長為2,頂點B、C在半徑為的圓上,頂點A在圓內,將正△ABC繞點B逆時針旋轉,當點A第一次落在圓上時,則點C運動的路線長為(結果保留π);若A點落在圓上記做第1次旋轉,將△ABC繞點A逆時針旋轉,當點C第一次落在圓上記做第2次旋轉,再繞C將△ABC逆時針旋轉,當點B第一次落在圓上,記做第3次旋轉……,若此旋轉下去,當△ABC完成第2017次旋轉時,BC邊共回到原來位置次.12.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.13.函數y=中自變量x的取值范圍是___________.14.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.15.在某公益活動中,小明對本年級同學的捐款情況進行了統(tǒng)計,繪制成如圖所示的不完整的統(tǒng)計圖,其中捐10元的人數占年級總人數的25%,則本次捐款20元的人數為______人.16.25位同學10秒鐘跳繩的成績匯總如下表:人數1234510次么跳繩次數的中位數是_____________.17.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.19.(5分)隨著高鐵的建設,春運期間動車組發(fā)送旅客量越來越大,相關部門為了進一步了解春運期間動車組發(fā)送旅客量的變化情況,針對2014年至2018年春運期間的鐵路發(fā)送旅客量情況進行了調查,過程如下.(Ⅰ)收集、整理數據請將表格補充完整:(Ⅱ)描述數據為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用什么圖(回答“折線圖”或“扇形圖”)進行描述;(Ⅲ)分析數據、做出推測預估2019年春運期間動車組發(fā)送旅客量占比約為多少,說明你的預估理由.20.(8分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.21.(10分)經過校園某路口的行人,可能左轉,也可能直行或右轉.假設這三種可能性相同,現有小明和小亮兩人經過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.22.(10分)已知關于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數m,判斷方程①的根的情況,并說明理由.23.(12分)綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數和眾數;為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數)?并簡述其理由.24.(14分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
結合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點睛】此類題目主要考查二次函數圖象的平移規(guī)律,解題的關鍵是要搞清已知函數解析式確定平移后的函數解析式,還是已知平移后的解析式求原函數解析式,然后根據圖象平移規(guī)律“左加右減、上加下減“進行解答.2、A【解析】
根據題意設未知數,找到等量關系即可解題,見詳解.【詳解】解:設購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關系是解題關鍵.3、B【解析】
直接利用平均數的求法進而得出x的值,再利用中位數的定義求出答案.【詳解】∵一組數據1,7,x,9,5的平均數是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數據的中位數為:1.故選B.【點睛】此題主要考查了中位數以及平均數,正確得出x的值是解題關鍵.4、B【解析】
在等腰三角形△ABE中,求出∠A的度數即可解決問題.【詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故選B.【點睛】本題主要考查多邊形內角與外角的知識點,解答本題的關鍵是求出正五邊形的內角,此題基礎題,比較簡單.5、D【解析】分析:根據一次函數的圖形與性質,由一次函數y=kx+b的系數k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數),∴y=(a-1)x-(a-1)當a-1>0時,即a>1,此時函數的圖像過一三四象限;當a-1<0時,即a<1,此時函數的圖像過一二四象限.故其函數的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數的圖像與性質,利用一次函數的圖像與性質的關系判斷即可.一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質:當k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當k<0,b>0時,圖像過一二四象限,y隨x增大而減小;當k<0,b<0,圖像過二三四象限,y隨x增大而減小.6、D【解析】試題分析:根據有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀7、D【解析】
根據正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數互為相反數可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.8、C【解析】
根據題意,求出∠AEM,再根據AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內角和與兩條直線平行內錯角相等.9、B【解析】分析:根據三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.10、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、,1.【解析】
首先連接OA′、OB、OC,再求出∠C′BC的大小,進而利用弧長公式問題即可解決.因為△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,推出當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次.【詳解】如圖,連接OA′、OB、OC.∵OB=OC=,BC=2,∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可證:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴當點A第一次落在圓上時,則點C運動的路線長為:.∵△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,∴當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次,故答案為:,1.【點睛】本題考查軌跡、等邊三角形的性質、旋轉變換、規(guī)律問題等知識,解題的關鍵是循環(huán)利用數形結合的思想解決問題,循環(huán)從特殊到一般的探究方法,所以中考填空題中的壓軸題.12、或【解析】分析:依據△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據含30°角的直角三角形的性質以及等腰直角三角形的性質,即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.13、x≥﹣且x≠1【解析】
試題解析:根據題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.14、2【解析】
解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.15、35【解析】分析:根據捐款10元的人數占總人數25%可得捐款總人數,將總人數減去其余各組人數可得答案.詳解:根據題意可知,本年級捐款捐款的同學一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點睛:本題考查了條形統(tǒng)計圖.計算出捐款總人數是解決問題的關鍵.16、20【解析】分析:根據中位數的定義進行計算即可得到這組數據的中位數.詳解:由中位數的定義可知,這次跳繩次數的中位數是將這25位同學的跳繩次數按從小到大排列后的第12個和13個數據的平均數,∵由表格中的數據分析可知,這組數據按從小到大排列后的第12個和第13個數據都是20,∴這組跳繩次數的中位數是20.故答案為:20.點睛:本題考查的是怎樣確定一組數據的中位數,解題的關鍵是弄清“中位數”的定義:“把一組數據按從小到大的順序排列后,若數據組中共有奇數個數據,則最中間一個數據是該組數據的中位數;若數據組中數據的個數為偶數個,則最中間兩個數據的平均數是這組數據的中位數”.17、2或14【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】①當弦AB和CD在圓心同側時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】
由知,再由知、,據此可得,證≌即可得;
易知四邊形ABEF是矩形,設,可得,證≌得,在中,由,列方程求解可得答案;
分點C在AF的左側和右側兩種情況求解:左側時由知、、,在中,由可得關于m的方程,解之可得;右側時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據此可得,再分點D在矩形內部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設,則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當點C在AF的左側時,,則,,,,在中,由可得,解得:負值舍去;如圖2,當點C在AF的右側時,,,,,,在中,由可得,解得:負值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當點D在矩形ABEF的內部時,由可設、,則,,則;如圖4,當點D在矩形ABEF的外部時,由可設、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關鍵是掌握矩形的判定與性質、全等三角形的判定和性質及勾股定理、三角形的面積等知識點.19、(Ⅰ)見表格;(Ⅱ)折線圖;(Ⅲ)60%、之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【解析】
(Ⅰ)根據百分比的意義解答可得;(Ⅱ)根據折線圖和扇形圖的特點選擇即可得;(Ⅲ)根據之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【詳解】(Ⅰ)年份20142015201620172018動車組發(fā)送旅客量a億人次0.871.141.461.802.17鐵路發(fā)送旅客總量b億人次2.522.763.073.423.82動車組發(fā)送旅客量占比×10034.5%41.3%47.6%52.6%56.8%(Ⅱ)為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用折線圖進行描述,故答案為折線圖;(Ⅲ)預估2019年春運期間動車組發(fā)送旅客量占比約為60%,預估理由是之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【點睛】本題考查了統(tǒng)計圖的選擇,根據統(tǒng)計圖的特點正確選擇統(tǒng)計圖是解題的關鍵.20、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質、勾股定理等知識即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數值等知識即可求出BQ長.(4)要滿足∠AMB=40°,可構造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質、特殊角的三角函數值等知識,就可算出符合條件的DM長.【詳解】(1)①作AD的垂直平分線交BC于點P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當∠EQF=90°時,BQ的長為4+.(4)在線段CD上存在點M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,過點O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設交點為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點M在點H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點M不在線段CD上,應舍去.若點M在點H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點M在線段CD上.綜上所述:在線段CD上存在唯一的點M,使∠AMB=40°,此時DM的長為(200-25-40)米.【點睛】本題考查了垂直平分線的性質、矩形的性質、等邊三角形的性質、正方形的判定與性質、直線與圓的位置關系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質、勾股定理、特殊角的三角函數值等知識,考查了操作、探究等能力,綜合性非常強.而構造等邊三角形及其外接圓是解決本題的關鍵.21、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數,找出“至少有一人直行”的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數,其中兩人之中至少有一人直行的結果數為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數與總情況數之比.22、(1)方程的另一根為x=2;(2)方程總有兩個不等的實數根,理由見解析.【解析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉化為判別式△與1的關系進行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實數根.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電子商務產業(yè)園企業(yè)入駐合同模板
- 上海視覺藝術學院《媒介社會學導論》2023-2024學年第一學期期末試卷
- 上海師范大學天華學院《學生工作實務》2023-2024學年第一學期期末試卷
- 課題申報書:高等教育高質量發(fā)展的制度瓶頸研究
- 課題申報書:二十世紀中國畫市場發(fā)展史研究
- 課題申報書:多模態(tài)數據驅動的城市夜間旅游活動規(guī)律及其與空間協同演化機制研究
- 上海杉達學院《建筑工程信息建模課程設計》2023-2024學年第一學期期末試卷
- 2023-2024屆高考作文模擬寫作“學會借鑒靈活應變”導寫及范文
- 上海農林職業(yè)技術學院《化工原理(機械)》2023-2024學年第一學期期末試卷
- 上海紐約大學《自然資源管理概論》2023-2024學年第一學期期末試卷
- 教育教學理論試題及答案
- 透析出現房顫的護理
- 2024年《大學語文》期末考試復習題庫(含答案)
- 部編版二年級語文上冊第二單元大單元教學設計
- 工業(yè)園區(qū)物流服務調研報告
- 安寧療護個案護理匯報
- 有機硅皮革行業(yè)報告
- 電冰箱發(fā)泡作業(yè)指導書
- MOOC Python數據爬取與可視化-南華大學 中國大學慕課答案
- 上海汽車集團股份有限公司本量利運用分析
- 調解中心成立流程
評論
0/150
提交評論