視覺數(shù)學(xué)課程 III Blackline Masters_第1頁
視覺數(shù)學(xué)課程 III Blackline Masters_第2頁
視覺數(shù)學(xué)課程 III Blackline Masters_第3頁
視覺數(shù)學(xué)課程 III Blackline Masters_第4頁
視覺數(shù)學(xué)課程 III Blackline Masters_第5頁
已閱讀5頁,還剩494頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

mathalivey

VISUALMATHEMATICSCOURSEIIIBLACKLINEMASTERS

Thispacketcontainsonecopyofeach

displaymasterandstudentactivitypage.

MathAlive!

VisualMathematics,CourseIII

byLindaCooperForemanandAlbertB.BennettJr.

BlacklineMasters

Copyright?1998TheMathLearningCenter,POBox12929,Salem,Oregon97309.Tel.503370-8130.Allrightsreserved.

ProducedfordigitaldistributionNovember2016.

TheMathLearningCentergrantspermissiontoclassroomteacherstoreproduceblacklinemasters,includingthoseinthisdocument,inappropriatequantitiesfortheirclassroomuse.

Thisprojectwassupported,inpart,bytheNationalScienceFoundationGrantESI-9452851.OpinionsexpressedarethoseoftheauthorsandnotnecessarilythoseoftheFoundation.

PreparedforpublicationonMacintoshDesktopPublishingsystem.PrintedintheUnitedStatesofAmerica.

DIGITAL2016

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BlacklineMasters

LESSON1ConnectorMasterA

ConnectorMasterBConnectorMasterCConnectorMasterDFocusMasterA

FocusStudentActivity1.1

FocusStudentActivity1.2

Follow-upStudentActivity1.3

LESSON2FocusMasterA

FocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterFFocusMasterGFocusMasterHFocusMasterIFocusMasterJ

FocusStudentActivity2.1

FocusStudentActivity2.2

FocusStudentActivity2.3

Follow-upStudentActivity2.4

LESSON3ConnectorMasterA

ConnectorMasterBFocusMasterA

FocusMasterBFocusMasterCFocusMasterD

FocusStudentActivity3.1

FocusStudentActivity3.2

FocusStudentActivity3.3

FocusStudentActivity3.4

Follow-upStudentActivity3.5

LESSON4ConnectorStudentActivity4.1

FocusMasterAFocusMasterBFocusMasterC

FocusStudentActivity4.2(optional)Follow-upStudentActivity4.3

LESSON5ConnectorMasterA(optional)

ConnectorMasterBConnectorMasterCConnectorMasterDFocusMasterA

FocusMasterBFocusMasterCFocusMasterD

FocusStudentActivity5.1

Follow-upStudentActivity5.2

Copies/Transparencies

1pergroup,1transp.

1pergroup,1transp.

1pergroup,1transp.

2perstudent,2transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1perstudent,1transp.

1perstudent,1transp.

2perstudent,1transp.

1transp.

1transp.

1perstudent,2transp.

1perstudent,2transp.

1perstudent,2transp.

1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1pergroup,1transp.

1perstudent,1transp.

1transp.

4pertwostudents,1transp.

1perstudent

1pertwostudents,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1perstudent

1transp.

1transp.

1pertwostudents,1transp.

1perstudent

1perstudent

1perteacher

1pertwostudents,1transp.

1perstudent,1transp.

1transp.

1transp.

1transp.

1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

.

.

.

.

.

.

MathAlive!VisualMathematics,CourseIII/vii

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BlacklineMasters(continued)

LESSON6ConnectorMasterA

FocusMasterAFocusMasterBFocusMasterC

FocusStudentActivity6.1

FocusStudentActivity6.2

FocusStudentActivity6.3

FocusStudentActivity6.4

FocusStudentActivity6.5

Follow-upStudentActivity6.6

LESSON7ConnectorMasterA

FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterE

FocusStudentActivity7.1

Follow-upStudentActivity7.2

LESSON8ConnectorMasterA

ConnectorMasterBConnectorMasterCConnectorMasterD

ConnectorStudentActivity8.1FocusMasterA

FocusMasterBFocusMasterCFocusMasterD

FocusStudentActivity8.2

Follow-upStudentActivity8.3

LESSON9ConnectorMasterA

ConnectorMasterBConnectorMasterC

ConnectorStudentActivity9.1FocusMasterA

FocusMasterBFocusMasterCFocusMasterDFocusMasterE

FocusStudentActivity9.2

FocusStudentActivity9.3

Follow-upStudentActivity9.4

Copies/Transparencies

1pergroup,1transp.

2perstudent,1transp.

1pergroup,1transp.

1pergroup,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1transp.

1perstudent,1transp.

1pergroup,1transp.

1pergroup,1transp.

1transp.

1transp.

1perstudent,1transp.

1perstudent

2perstudent,1pergroup,and1transp.

1pergroup,1transp.

1pergroup,1transp.

1pergroup,1transp.

1pergroup,1transp.

1transp.

1transp.

1pertwostudents,1transp.

1transp.

1pertwostudents,1transp.

1perstudent

1pertwostudents,1transp.

1pertwostudents,1transp.

1pertwostudents,1transp.

1perstudent,1transp.

1pergroup,1transp.

1transp.

1transp.

1pergroup,1transp.

2perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

viii/MathAlive!VisualMathematics,CourseIII

.

.

.

.

.

BlacklineMasters(continued)

.

.

.

.

Copies/Transparencies

.

1transp.

1transp.

1pertwostudents,1transp.

1transp.

1pertwostudents,1transp.

1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1transp.

1perstudent,1transp.

1perstudent,1transp.

1transp.

1transp.

1transp.

1pergroup,1transp.

1transp.

1transp.

1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1pergroup,1transp.

1perstudent

1pertwostudents,1transp.

1pergroup,1transp.

1transp.

1pergroup,1transp.

1perstudent,1transp.

1pergroup,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1transp.

1transp.

1pertwostudents,1transp.

1pertwostudents,1transp.

1transp.

1transp.

1pertwostudents,1transp.

1perstudent

LESSON

10

.

.

.

ConnectorMasterAFocusMasterA

.

.

.

.

.

.

.

.

FocusMasterBFocusMasterCFocusMasterDFocusMasterE

.

.

FocusStudentActivity10.1

.

.

FocusStudentActivity10.2

.

.

.

FocusStudentActivity10.3

.

.

FocusStudentActivity10.4

.

.

Follow-upStudentActivity10.5

.

.

.

LESSON

11

.

ConnectorMasterA

.

.

.

.

ConnectorStudentActivity11.1ConnectorStudentActivity11.2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterFFocusMasterG

.

.

.

FocusStudentActivity11.3

.

.

FocusStudentActivity11.4

.

.

FocusStudentActivity11.5

.

.

FocusStudentActivity11.6

.

.

FocusStudentActivity11.7

.

.

Follow-upStudentActivity11.8

.

.

.

LESSON

12

.

ConnectorStudentActivity12.1

.

.

.

.

.

.

.

.

.

.

FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterE

.

.

.

FocusStudentActivity12.2

.

.

FocusStudentActivity12.3

.

.

FocusStudentActivity12.4

.

.

Follow-upStudentActivity12.5

.

.

.

LESSON

13

.

.

.

ConnectorMasterAFocusMasterA

.

.

.

.

.

.

.

.

.

.

FocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterF

.

.

.

Follow-upStudentActivity13.1

.

.

.

.

.

.

MathAlive!VisualMathematics,CourseIII/ix

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BlacklineMasters(continued)

LESSON

14

FocusMasterAFocusMasterBFocusMasterCFocusMasterD

FocusStudentActivity14.1

FocusStudentActivity14.2

Follow-upStudentActivity14.3

LESSON

15

ConnectorStudentActivity15.1

FocusMasterAFocusMasterBFocusMasterCFocusMasterD

FocusStudentActivity15.2

FocusStudentActivity15.3

FocusStudentActivity15.4

FocusStudentActivity15.5

FocusStudentActivity15.6

FocusStudentActivity15.7

Follow-upStudentActivity15.8

LESSON

16

ConnectorMasterAConnectorMasterBConnectorMasterC

ConnectorStudentActivity16.1FocusStudentActivity16.2

FocusStudentActivity16.3

FocusStudentActivity16.4

Follow-upStudentActivity16.5

LESSON

17

ConnectorMasterAConnectorMasterB

ConnectorStudentActivity17.1

FocusMasterAFocusMasterBFocusMasterC

FocusStudentActivity17.2

FocusStudentActivity17.3

Follow-upStudentActivity17.4

Copies/Transparencies

1transp.

1pergroup,1transp.

1pergroup,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1perstudent,1transp.

1transp.

1transp.

1perstudent,1transp.

1perstudent,1transp.

1pergroup,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1transp.

1transp.

1transp.

1pertwostudents,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent,1transp.

1perstudent

1perstudent,1transp.

1perstudent,1transp.

1pergroup,1transp.

1transp.

1perstudent,1transp.

1transp.

1pergroup,1transp.

1pergroup,1transp.

1perstudent

x/MathAlive!VisualMathematics,CourseIII

ExploringSymmetryLesson1

ConnectorMasterA

ROTATIONS/TURNS

a)Completethisprocedure:

?Positionyournotecardsothatitfitsinitsframewithnogapsoroverlaps.

?Markapointanywhereonyourcardwithadot,andlabelthispointP.

?PlaceapencilpointonyourpointPandholdthepencilfirmlyinaverticalpositionatP.

?RotatethecardaboutPuntilthecardfitsbackintoitsframewithnogapsoroverlaps.

b)HowmanydifferentrotationsofthecardaboutyourpointParepossiblesothatthecardfitsbackinits

framewithnogapsoroverlaps?Assumethatrotationsaredifferentiftheyresultindifferentplacementsof

thecardinitsframe.

c)Ifonlya360。(or0。)rotationaboutyourpointP

bringsthecardbackintoitsframe,findanotherposi-tionforPonthecardsothatmorethanonedifferentrotationaboutthispointispossible.Whatarethemea-suresoftherotationsandhowdidyoudetermine

them?

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson1ExploringSymmetry

ConnectorMasterB

REFLECTIONS/FLIPS

Figure1belowshowstheframeforarectangularcardwithalineldrawnacrosstheframe.InFigure2,the

cardhasbeenplacedintheframe.Figure3showstheresultofreflecting,orflipping,thecardoverlinel.No-ticethatafterthereflectionoverlinel,thecarddoesnotfitbackinitsframe.

l

Figure1

l

A

D

B

C

Figure2

l

Figure3

Determineallthedifferentpossibleplacementsoflinelsothatwhenyouflipyourcardonceoverl,thecardfitsbackinitsframewithnogapsoroverlaps.

HINT:Asaguideforflippingthecardaboutaline,youcouldtapeapencilorcoffeestirrertothecardalongthepathoflinel,as

shownbelow.Thenkeepthepencilorcoffeestirreralignedwithlinelasyouflipthecard.

..

l

A

D

C

B

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

ExploringSymmetryLesson1

ConnectorMasterC

a)Discussyourgroup’sideasandquestionsaboutthemeaningsofthefollowingterms.Talkaboutways

thesetermsrelatetoanonsquarerectanglesuchasyournotecard.Recordimportantideasandquestionstosharewiththeclass.

i)reflectionalsymmetry

ii)axisofreflection(alsocalledlineofreflection)

iii)rotationalsymmetry

iv)centerofrotation

v)frametestforsymmetry

b)Ifashapeissymmetrical,itsorderofsymmetryisthenumberofdifferentpositionsfortheshapeinitsframe,wheredifferentmeansthesidesoftheshapeandthesidesoftheframematchindistinctlydifferentways.Developaconvincingargumentthatyourrect-angularnotecardhassymmetryoforderfour.

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

ConnectorMasterD

a)

c)

b)

d)

f)

e)

g)

i)

h)

j)

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

FocusMasterA

OurGoalsasMathematicians

Weareacommunityofmathematicians

workingtogethertodevelopour:

a)visualthinking,

b)conceptunderstanding,

c)reasoningandproblemsolving,

d)abilitytoinventproceduresandmakegeneralizations,

e)mathematicalcommunication,

f)opennesstonewideasandvariedapproaches,

g)self-esteemandself-confidence,

h)joyinlearninganddoingmathematics.

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

FocusStudentActivity1.1

NAMEDATE

1Foreachshapebelow,determinementallyhowmanywaysonesquareofthegridcanbeaddedtotheshapetomakeitsymmetrical.Assumenogapsoroverlapsandthatsquaresmeetedge-to-edge.

A

B

C

D

F

2Foreachshapebelow,determinementallyhowmanywaysonetriangleofthegridcanbeaddedtotheshapetomakeitsymmetri-cal.Assumenogapsoroverlapsandthattrianglesmeetedge-to-

edge.

/A/

/B

C

D

F\

(Continuedonback.)

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson1ExploringSymmetry

FocusStudentActivity(cont.)

3Createashapethatismadeofsquaresjoinededge-to-edge(nooverlaps)andhasexactly3waysofaddingoneadditionalsquaretomaketheshapesymmetrical.

4Createashapethatismadeoftrianglesjoinededge-to-edge(nooverlaps)andhasexactly4waysofaddingoneadditionaltriangletomaketheshapesymmetrical.

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

ExploringSymmetryLesson1

FocusStudentActivity1.2

NAMEDATE

Writeawell-organized,sequentialsummaryofyourinvestigationofoneofProblems1or2.Includethefollowinginyoursummary:

?astatementoftheproblemyouinvestigate

?thestepsofwhatyoudo,includinganyfalsestartsanddead-ends

?relationshipsyounotice(smalldetailsareimportant)

?questionsthatoccurtoyou

?placesyougetstuckandthingsyoudotogetunstuck

?yourAHA!sandimportantdiscoveries

?conjecturesthatyoumake—includewhatsparkedandwaysyoutestedeachconjecture

?evidencetosupportyourconclusions.

1Anonsquarerectangleandanonsquarerhombuseachhave2

reflectionalsymmetries.However,the2linesofsymmetryareof2differenttypes—thelinesofsymmetryofarectangleconnectthe

midpointsofoppositesidesandthelinesofsymmetryofarhombusconnectoppositevertices.Investigateotherpolygonswithexactly2linesofsymmetryofthese2types.Generalize,ifpossible.

2What,ifany,istheminimumnumberofsidesforapolygon

with3rotationalsymmetriesandnoreflectionalsymmetry?What,ifany,isthemaximumnumberofsides?What,ifany,isthemini-mumnumberofsidesforpolygonswith4rotationalsymmetries

andnoreflectionalsymmetries?5rotationalandnoreflectionalsymmetries?nrotationalandnoreflectionalsymmetries?Investi-gate.

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

ExploringSymmetryLesson1

Follow-upStudentActivity1.3

NAMEDATE

1Traceandcutoutacopyofeachoftheaboveregularpolygons.Usethecopiesandoriginalpolygons,butnomeasuringtools(norulers,protractors,etc.),tohelpyoucompletethefollowingchart:

No.ofdifferent

positionsinframe

No.ofreflectionalsymmetries

No.ofrotationalsymmetries

Measuresofallanglesofrotation

Measureofeachinteriorangle*

*Interioranglesaretheangles“inside”thepolygonandareformedbyintersectionsofthesidesofthepolygon.

Completethefollowingproblemsonseparatepaper.BesuretowriteaboutanyAHA!s,conjectures,orgeneralizationsthatyoumake.

2Explainthemethodsthatyouusedtodeterminetheanglesofrotationandtheinterioranglemeasuresforthechartabove.Re-member,noprotractors.

3LabelthelastcolumnofthechartinProblem1“Regularn-gon”andthencompletethatcolumn.Foreachexpressionthatyouwriteinthelastcolumn,drawadiagram(onaseparatesheet)toshow

“why”theexpressioniscorrect.

(Continuedonback.)

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson1ExploringSymmetry

Follow-upStudentActivity(cont.)

4Discussthesymmetriesofacircle.Explainyourreasoning.

5Locatearesourcethatshowsflagsofthecountriesoftheworld.Foreachofthefollowing,ifpossible,sketchandcoloracopyofadifferentflag(labeleachflagbyitscountry’sname)andciteyour

resource.

a)rotationalsymmetrybutnoreflectionalsymmetry,

b)reflectionalsymmetryacrossahorizontalaxisonly,

c)nosymmetry,

d)bothrotationalandreflectionalsymmetry,

e)180。rotationalsymmetry.

6Sortandclassifythecapitallettersofthealphabetaccordingtotheirtypesofsymmetry.

7Attachpicturesof2differentcompanylogosthathavedifferenttypesofsymmetry.Describethesymmetryofeachlogo.

8Createyourpersonallogosothatithassymmetry.Recordtheorderofsymmetryforyourlogo,showthelocationofitsline(s)of

symmetry,and/orrecordthemeasuresofitsrotationalsymmetries.

9Jamaalmadeconjecturesa)andb)below.Determinewhether

youthinkeachconjectureisalways/sometimes/nevertrue.Give

evidencetoshowhowyoudecidedandtoshowwhyyourconclu-sioniscorrect.Ifyouthinkaconjectureisnottrue,edititsothatitistrue.

Ifashapehasexactly2axesofreflection,then

a)thoseaxesmustbeatrightanglestoeachother.

b)theshapealsomusthave2rotationalsymmetries.

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusMasterA

Investigatewaystouseslides,flips,and/orturnstomoveSquareFexactlyontoSquareD.Usewordsand/ormarkdiagramstoexplainthemovements

F

thatyouuse.

D

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusMasterB

F

D

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusMasterC

2

A

1

3

5

4

8

6

7

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusMasterD

PartI

ItispossibletomoveShapeAdirectlytoseveralofthenumberedpositionsusingexactlyoneoftheseisometriesonlyonce:translation,reflection,orrota-tion.Findeachpositionforwhichthisispossible,

andtellthesinglemotionthatmovesShapeAtothatposition.

PartII

DescribewaystomoveShapeAfromitsstarting

positiontoeachnumberedpositionusingacombi-nationofexactlytworeflections,rotations,and/ortranslations.Note:combinationsofmorethanonetypeofmotionareallowedaslongasnomorethantwomotionsareused.

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusMasterE

FriezeA

FriezeB

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusMasterF

FriezeA

FriezeB

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusMasterG

FriezeA

FriezeB

FriezeC

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusMasterH

FriezeA

FriezeB

FriezeC

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusMasterI

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusMasterJ

BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter

IntroductiontoIsometriesLesson2

FocusStudentActivity2.1

NAMEDATE

1Shownbelowareseveralpairsofcongruentshapes.Investigate

waystouseoneormoretranslations,reflections,rotations,orcom-binationsofthem,tomoveeachfirstshapeexactlyontothesecond.Foreachpairofshapes,writeanexplanationinwordsonlyofyour“favorite”motionorcombinationofmotions;explaininenough

detailthatareaderwouldbeabletoduplicateyourmotionswithoutadditionalinformation.

a)

b)

c)

d)

e)

2Challenge.Eachmotionorcombinationofmotionsthatyou

determinedforProblem1producesamappingofthefirstshape(thepre-image)exactlyontothesecond(theimage).Howmanydifferentmappingsarethereforeachofa)-e),ifdifferentmeansthesidesofthepre-imageandthesidesoftheimagematchindistinctlydiffer-entways.

3Recordyour“Iwonder…”statements,conjectures,orconclu-sions.

?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII

Lesson2IntroductiontoIsometries

FocusStudentActivity2.2

NAMEDATE

1Shownattherightare2congruentsquares.Determinewaystouseexactlyoneisometry(translation,reflection,rotation,orglidereflection)tomoveSquareFexactlyontoSquareD.

2RepeatProblem1forthe2equilateraltrianglesshownhere:

3SketchthereflectedimageofShapeAacrosslinem.Nexttoyoursketchwriteseveralmathematicalobservationsabout

relationshipsyounotice.ThenexplainhowyouverifiedthattheimageisareflectionofShapeAacrosslinem.

4Challenge.DevelopamethodofaccuratelyreflectingShapeBacrosslinen.Showanddescribeyourmethodoflocatingthe

reflectedimageofShapeBandtellhowyouverifiedthatyourmethodwascorrect.Canyougeneralize?

F

D

\m

A

\n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論