




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
21.3實際問題與一元二次方程(第2課時)
第二十一章一元二次方程學習目標1.能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程并求解,體會一元二次方程是刻畫現(xiàn)實世界某些問題的一個有效的數(shù)學模型2.熟練掌握“增長率”型問題的解題規(guī)律,會檢驗所得結(jié)果是否合理,培養(yǎng)分析問題、解決問題的能力.探究新知問題導入
小明學習非常認真,學習成績直線上升,第一次月考數(shù)學成績是80分,第二次月考增長了10%,第三次月考又增長了10%,問他第三次數(shù)學成績是多少?探究二利用一元二次方程解決營銷問題
例1:新華商場銷售某種冰箱,每臺進價為2500元.市場調(diào)研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷價每降低50元時,平均每天能多售4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,每臺冰箱的定價應(yīng)為多少元?分析:本題的主要等量關(guān)系是:每臺冰箱的銷售利潤×平均每天銷售冰箱的數(shù)量=5000元.如果設(shè)每臺冰箱降價x元,那么每臺冰箱的定價就是(2900-x)元,每臺冰箱的銷售利潤為(2900-x-2500)元,平均每天銷售冰箱的數(shù)量為臺,這樣就可以列出一個方程,從而使問題得到解決.探究二利用一元二次方程解決營銷問題
解:設(shè)每臺冰箱降價x元,根據(jù)題意,得整理,得:x2-300x+22500=0.解方程,得:
x1=x2=150.
∴2900-
x=2900-150=2750.
答:每臺冰箱的定價應(yīng)為2750元.探究二利用一元二次方程解決營銷問題
例2:某超市將進價為30元的商品按定價40元出售時,能賣600件已知該商品每漲價1元,銷售量就會減少10件,為獲得10000元的利潤,且盡量減少庫存,售價應(yīng)為多少?分析:銷售利潤=(每件售價-每件進價)×銷售件數(shù),若設(shè)每件漲價x元,則售價為(40+x)元,銷售量為(600-10x)件,根據(jù)等量關(guān)系列方程即可.解:設(shè)每件商品漲價x元,根據(jù)題意,得
(40+x-30)(600-10x)=10000.即x2-50x+400=0.解得x1=10,x2=40.經(jīng)檢驗,x1=10,x2=40都是原方程的解.探究二利用一元二次方程解決營銷問題
當x=10時,售價為:40+10=50(元),銷售量為:600-10×10=500(件).當x=40時,售價為:40+40=80(元),銷售量為:600-10×40=200(件).∵要盡量減少庫存,∴售價應(yīng)為80元.針對訓練利用一元二次方程解決營銷問題
某花圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時,平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達到10元,每盆應(yīng)該植多少株?解:設(shè)每盆花苗增加的株數(shù)為x株,則每盆花苗有(x+3)株,平均單株盈利為(3-0.5x)元.根據(jù)題意,得.(x+3)(3-0.5x)=10.
思考:這個問題設(shè)什么為x?有幾種設(shè)法?如果直接設(shè)每盆植x株,怎樣表示問題中相關(guān)的量?如果設(shè)每盆花苗增加的株數(shù)為x株呢?探究二利用一元二次方程解決營銷問題
整理,得x2-3x+2=0.解這個方程,得
x1=1,x2=2.經(jīng)檢驗,x1=1,x2=2都符合題意.答:要使每盆的盈利達到10元,每盆應(yīng)植入4株或5株.總結(jié)歸納
利潤問題常見關(guān)系式基本關(guān)系:(1)利潤=售價-________;
(3)總利潤=____________×銷量進價單個利潤探究三平均變化率問題與一元二次方程
填空:
1.前年生產(chǎn)1噸甲種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進步,去年生產(chǎn)1噸甲種藥品的成本是4650
元,則下降率是
.如果保持這個下降率,則現(xiàn)在生產(chǎn)1噸甲種藥品的成本是
元.7%4324.5下降率=下降前的量-下降后的量下降前的量探究三平均變化率問題與一元二次方程
2.前年生產(chǎn)1噸甲種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進步,設(shè)下降率是x,則去年生產(chǎn)1噸甲種藥品的成本是
元,如果保持這個下降率,則現(xiàn)在生產(chǎn)1噸甲種藥品的成本是
元.下降率x第一次降低前的量5000(1-x)第一次降低后的量5000下降率x第二次降低后的量第二次降低前的量5000(1-x)(1-x)5000(1-x)25000(1-x)5000(1-x)2探究三平均變化率問題與一元二次方程
例3
前年生產(chǎn)1噸甲種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,試求甲種藥品成本的年平均下降率是多少?解:設(shè)甲種藥品的年平均下降率為x.根據(jù)題意,列方程,得5000(1-x)2=3000,解方程,得x1≈0.225,x2≈1.775.根據(jù)問題的實際意義,甲種藥品成本的年平均下降率約為22.5%.下降率不能超過1.注意探究三平均變化率問題與一元二次方程
前年生產(chǎn)1噸乙種藥品的成本是6000元.隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸乙種藥品的成本是3600元,試求乙種藥品成本的年平均下降率?
解:設(shè)乙種藥品的年平均下降率為y.根據(jù)題意,列方程,得6000(1-y)2=3600.解方程,得y1≈0.225,y2≈-1.775.
根據(jù)問題的實際意義,乙種藥品成本的年平均下降率約為22.5%.解后反思
答:不能.絕對量:甲種藥品成本的年平均下降額為(5000-3000)÷2=1000元,乙種藥品成本的年平均下降額為(6000-3000)÷2=1200元,顯然,乙種藥品成本的年平均下降額較大.
問題1
藥品年平均下降額大能否說年平均下降率(百分數(shù))就大呢?解后反思
答:不能.
能過上面的計算,甲、乙兩種藥品的年平均下降率相等.因此我們發(fā)現(xiàn)雖然絕對量相差很多,但其相對量(年平均下降率)也可能相等.
問題2從上面的絕對量的大小能否說明相對量的大小呢?也就說能否說明乙種藥品成本的年平均下降率大呢?解后反思
問題3
你能總結(jié)出有關(guān)增長率和降低率的有關(guān)數(shù)量關(guān)系嗎?
類似地這種增長率的問題在實際生活中普遍存在,有一定的模式.若平均增長(或降低)百分率為x,增長(或降低)前的是a,增長(或降低)n次后的量是b,則它們的數(shù)量關(guān)系可表示為a(1±x)n=b(其中增長取“+”,降低取“-”).探究三平均變化率問題與一元二次方程
例4
某公司去年的各項經(jīng)營中,一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共950萬元,如果平均每月營業(yè)額的增長率相同,求這個增長率.
分析:設(shè)這個增長率為x,則二月份營業(yè)額為:__________________.三月份營業(yè)額為:_______________.根據(jù):
.作為等量關(guān)系列方程為:200(1+x)一月、二月、三月的營業(yè)額共950萬元.200(1+x)2200+200(1+x)+200(1+x)2=950探究三平均變化率問題與一元二次方程
例4
某公司去年的各項經(jīng)營中,一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共950萬元,如果平均每月營業(yè)額的增長率相同,求這個增長率.
解:設(shè)這個增長率為x.根據(jù)題意,得答:這個增長率為50%.200+200(1+x)+200(1+x)2=950整理方程,得4x2+12x-7=0,解這個方程得x1=-3.5(舍去),x2=0.5.注意增長率不可為負,但可以超過1.總結(jié)歸納平均變化率問題中常見概念1.增長率問題a(1+x)2=b,其中a為增長前的量,x為增長率,2為增長次數(shù),b為增長后的量.2.降低率問題a(1-x)2=b,其中a為降低前的量,x為降低率,2為降低次數(shù),b為降低后的量.注意1與x位置不可調(diào)換.練一練【解析】1.某水稻科研團隊在增產(chǎn)攻堅第一階段實現(xiàn)水稻畝產(chǎn)量700公斤的目標,第三階段實現(xiàn)水稻畝產(chǎn)量1008公斤的目標.(注:1公斤=1千克)(1)如果第二階段、第三階段畝產(chǎn)量的增長率相同,求畝產(chǎn)量的增長率;練一練【解析】1.某水稻科研團隊在增產(chǎn)攻堅第一階段實現(xiàn)水稻畝產(chǎn)量700公斤的目標,第三階段實現(xiàn)水稻畝產(chǎn)量1008公斤的目標.(注:1公斤=1千克)(2)按照(1)中畝產(chǎn)量增長率,科研團隊期望第四階段水稻畝產(chǎn)量達到1200公斤,請通過計算說明他們的目標是否可以實現(xiàn).練一練【解析】2.為積極響應(yīng)國家“雙減”政策,鼓勵教師積極參與課后服務(wù)工作,某市推出名師公益大課堂,為學生提供線上線下免費輔導,據(jù)統(tǒng)計,第一批公益課受益學生2萬人次,第三批公益課受益學生2.42萬人次.(1)如果第二批、第三批公益課受益學生人次的增長率相同,求這個增長率;練一練【解析】2.為積極響應(yīng)國家“雙減”政策,鼓勵教師積極參與課后服務(wù)工作,某市推出名師公益大課堂,為學生提供線上線下免費輔導,據(jù)統(tǒng)計,第一批公益課受益學生2萬人次,第三批公益課受益學生2.42萬人次.(2)如果按照(1)中的增長率,預計第四批公益課受益學生數(shù)將達到多少萬人次?練一練【解析】3.2021年是我國脫貧勝利年,我國在扶貧方面取得了巨大的成就,技術(shù)扶貧也使得某縣的一個電子器件廠扭虧為盈.該電子器件廠生產(chǎn)一種電腦顯卡,2019年該類電腦顯卡的成本是200元/個,2020年與2021年連續(xù)兩年在技術(shù)扶貧的幫助下改進技術(shù),降低成本,2021年該電腦顯卡的成本降低到162元/個.(1)若這兩年此類電腦顯卡成本下降的百分率相同,求平均每年下降的百分率;練一練【解析】3.(2)2021年某商場以高于成本價10%的價格購進若干個此類電腦顯卡,以216.2元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)項目經(jīng)濟效益責任協(xié)議
- 大學通識教育的國際化視野與實踐
- 2025年度餐飲服務(wù)業(yè)試用期勞動合同范本
- 形神拳 教學設(shè)計-2024-2025學年高一上學期體育與健康人教版必修第一冊
- 城市休閑公園項目可行性研究報告
- 16-1《赤壁賦》(教學設(shè)計)高一語文同步高效課堂(統(tǒng)編版 必修上冊)
- 安防監(jiān)控居間合同格式
- 教育培訓機構(gòu)建設(shè)居間合同
- 小蝌蚪的成長(教學設(shè)計)-2023-2024學年二年級下冊數(shù)學北師大版
- 三年上冊語文學期教學計劃系列
- 2024-2025學年成都市成華區(qū)七年級上英語期末考試題(含答案)
- 2025年山西杏花村汾酒集團限責任公司人才招聘71名高頻重點提升(共500題)附帶答案詳解
- 石家莊市長安區(qū)學年三年級數(shù)學第一學期期末檢測試題含解析
- 2025年中國一汽招聘筆試參考題庫含答案解析
- 特殊家長課后溝通技巧培訓
- 超聲輸卵管造影護理配合
- 心內(nèi)科心衰一病一品護理成果匯報
- 2025檢驗檢測中心年度工作總結(jié)及工作計劃
- 2024年總經(jīng)理助理年終工作總結(jié)(3篇)
- 2024年考研英語(二)真題及參考答案
- 山西省太原市2023-2024學年高二上學期期末物理試題(含答案)
評論
0/150
提交評論