版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省懷化市2024屆中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.2.如圖是一次數(shù)學(xué)活動(dòng)課制作的一個(gè)轉(zhuǎn)盤,盤面被等分成四個(gè)扇形區(qū)域,并分別標(biāo)有數(shù)字-1,0,1,2.若轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,每次轉(zhuǎn)盤停止后記錄指針?biāo)竻^(qū)域的數(shù)字(當(dāng)指針恰好指在分界線上時(shí),不記,重轉(zhuǎn)),則記錄的兩個(gè)數(shù)字都是正數(shù)的概率為()A. B. C. D.3.撫順市中小學(xué)機(jī)器人科技大賽中,有7名學(xué)生參加決賽,他們決賽的成績(jī)各不相同,其中一名參賽選手想知道自己能否進(jìn)入前4名,他除了知道自己成績(jī)外還要知道這7名學(xué)生成績(jī)的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差4.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長(zhǎng)是()A. B. C. D.5.已知線段AB=8cm,點(diǎn)C是直線AB上一點(diǎn),BC=2cm,若M是AB的中點(diǎn),N是BC的中點(diǎn),則線段MN的長(zhǎng)度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm6.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為()A.7 B.8 C.9 D.107.如圖,在矩形ABCD中,AB=5,BC=7,點(diǎn)E為BC上一動(dòng)點(diǎn),把△ABE沿AE折疊,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在∠ADC的角平分線上時(shí),則點(diǎn)B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或58.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長(zhǎng)是()A. B. C. D.9.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長(zhǎng)度()A.1 B.5 C.1或5 D.2或410.甲、乙、丙、丁四名射擊運(yùn)動(dòng)員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績(jī)?nèi)鐖D所示,丙、丁二人的成績(jī)?nèi)绫硭荆蕴幻\(yùn)動(dòng)員,從平均數(shù)和方差兩個(gè)因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁11.如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.12.-3的倒數(shù)是()A.3 B.13 C.-1二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在每個(gè)小正方形邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上,為邊上的一點(diǎn).線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點(diǎn),使的值最小,請(qǐng)用無(wú)刻度的直尺,畫出和點(diǎn),并簡(jiǎn)要說(shuō)明和點(diǎn)的位置是如何找到的(不要求證明)___________.14.如圖,在△ABC中,AB=AC=10cm,F(xiàn)為AB上一點(diǎn),AF=2,點(diǎn)E從點(diǎn)A出發(fā),沿AC方向以2cm/s的速度勻速運(yùn)動(dòng),同時(shí)點(diǎn)D由點(diǎn)B出發(fā),沿BA方向以lcm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<5),連D交CF于點(diǎn)G.若CG=2FG,則t的值為_____.15.飛機(jī)著陸后滑行的距離S(單位:米)與滑行的時(shí)間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機(jī)著陸后滑行_____秒停下.16.如圖,在5×5的正方形(每個(gè)小正方形的邊長(zhǎng)為1)網(wǎng)格中,格點(diǎn)上有A、B、C、D、E五個(gè)點(diǎn),如果要求連接兩個(gè)點(diǎn)之后線段的長(zhǎng)度大于3且小于4,則可以連接_____.(寫出一個(gè)答案即可)17.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.18.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買一批足球,已知購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.求A,B兩種品牌的足球的單價(jià).求該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.20.(6分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P、A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.21.(6分)已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過(guò)點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是;(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時(shí),求證:AE+EH=CH.22.(8分)如圖,AB∥CD,E、F分別為AB、CD上的點(diǎn),且EC∥BF,連接AD,分別與EC、BF相交與點(diǎn)G、H,若AB=CD,求證:AG=DH.23.(8分)為響應(yīng)學(xué)校全面推進(jìn)書香校園建設(shè)的號(hào)召,班長(zhǎng)李青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(:,:,:,:),根據(jù)圖中信息,解答下列問(wèn)題:(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書心得發(fā)言代表,請(qǐng)用列表或畫樹狀圖的方法求出選中甲的概率.24.(10分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過(guò)點(diǎn)A,D的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OF交AD于點(diǎn)G.求證:BC是⊙O的切線;設(shè)AB=x,AF=y(tǒng),試用含x,y的代數(shù)式表示線段AD的長(zhǎng);若BE=8,sinB=,求DG的長(zhǎng),25.(10分)在“弘揚(yáng)傳統(tǒng)文化,打造書香校園”活動(dòng)中,學(xué)校計(jì)劃開展四項(xiàng)活動(dòng):“A-國(guó)學(xué)誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意思,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:(1)根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.(2)所抽取的學(xué)生參加其中一項(xiàng)活動(dòng)的眾數(shù)是.(3)學(xué)校現(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?26.(12分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.27.(12分)為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進(jìn)行才藝比賽,每人只能從以下五個(gè)項(xiàng)目中選報(bào)一項(xiàng):.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報(bào)名的統(tǒng)計(jì)結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖:圖1各項(xiàng)報(bào)名人數(shù)扇形統(tǒng)計(jì)圖:圖2各項(xiàng)報(bào)名人數(shù)條形統(tǒng)計(jì)圖:根據(jù)以上信息解答下列問(wèn)題:(1)學(xué)生報(bào)名總?cè)藬?shù)為人;(2)如圖1項(xiàng)目D所在扇形的圓心角等于;(3)請(qǐng)將圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;(4)學(xué)校準(zhǔn)備從書法比賽一等獎(jiǎng)獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書法比賽,求恰好選中甲、乙兩名同學(xué)的概率.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長(zhǎng)為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點(diǎn)睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問(wèn)題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.2、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結(jié)果,兩個(gè)數(shù)都為正數(shù)的結(jié)果有4種,所以兩個(gè)數(shù)都為正數(shù)的概率為,故選C.考點(diǎn):用列表法(或樹形圖法)求概率.3、A【解析】
7人成績(jī)的中位數(shù)是第4名的成績(jī).參賽選手要想知道自己是否能進(jìn)入前4名,只需要了解自己的成績(jī)以及全部成績(jī)的中位數(shù),比較即可.【詳解】由于總共有7個(gè)人,且他們的分?jǐn)?shù)互不相同,第4的成績(jī)是中位數(shù),要判斷是否進(jìn)入前4名,故應(yīng)知道中位數(shù)的多少,故選A.【點(diǎn)睛】本題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關(guān)的定義是解題的關(guān)鍵.4、D【解析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長(zhǎng).【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.5、B【解析】(1)如圖1,當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)B之間時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長(zhǎng)度為5cm或3cm.故選B.點(diǎn)睛:解本題時(shí),由于題目中告訴的是點(diǎn)C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關(guān)系要分點(diǎn)C在線段AB上和點(diǎn)C在線段AB的延長(zhǎng)線上兩種情況分析解答,不要忽略了其中任何一種.6、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為9個(gè),故選C.【點(diǎn)睛】考查了三視圖判定幾何體,關(guān)鍵是對(duì)三視圖靈活運(yùn)用,體現(xiàn)了對(duì)空間想象能力的考查.7、A【解析】
連接B′D,過(guò)點(diǎn)B′作B′M⊥AD于M.設(shè)DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過(guò)解方程求得x的值,易得點(diǎn)B′到BC的距離.【詳解】解:如圖,連接B′D,過(guò)點(diǎn)B′作B′M⊥AD于M,∵點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在∠ADC的角平分線上,∴設(shè)DM=B′M=x,則AM=7﹣x,又由折疊的性質(zhì)知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點(diǎn)B′到BC的距離為2或1.故選A.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.8、C【解析】
易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質(zhì)可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點(diǎn)睛】本題考查了相似三角形的判定及性質(zhì)定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.9、C【解析】
由點(diǎn)C是劣弧AB的中點(diǎn),得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點(diǎn)C是劣弧AB的中點(diǎn),∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對(duì)稱性得,當(dāng)P在OC的左側(cè)時(shí),PB=3+2=5,∴PB的長(zhǎng)度為1或5.故選C.【點(diǎn)睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.10、D【解析】
求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個(gè)人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰?。蔬xD.【點(diǎn)睛】本題考查方差、平均數(shù)、折線圖等知識(shí),解題的關(guān)鍵是記住平均數(shù)、方差的公式.11、B【解析】
根據(jù)左視圖的定義,從左側(cè)會(huì)發(fā)現(xiàn)兩個(gè)正方形摞在一起.【詳解】從左邊看上下各一個(gè)小正方形,如圖故選B.12、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(Ⅰ)(Ⅱ)如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn).【解析】
(Ⅰ)根據(jù)勾股定理進(jìn)行計(jì)算即可.(Ⅱ)根據(jù)菱形的每一條對(duì)角線平分每一組對(duì)角,構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點(diǎn)F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,此時(shí)的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn),則點(diǎn)P即為所求.說(shuō)明:構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點(diǎn)F,使AF=AC=1,則AM垂直平分CF,點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,則點(diǎn)P即為所求.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對(duì)稱—最短距離等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題.14、1【解析】
過(guò)點(diǎn)C作CH∥AB交DE的延長(zhǎng)線于點(diǎn)H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過(guò)點(diǎn)C作CH∥AB交DE的延長(zhǎng)線于點(diǎn)H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點(diǎn)睛】本題主要考查了三角形中的動(dòng)點(diǎn)問(wèn)題,熟練掌握三角形相似的相關(guān)方法是解決本題的關(guān)鍵.15、1【解析】
飛機(jī)停下時(shí),也就是滑行距離最遠(yuǎn)時(shí),即在本題中需求出s最大時(shí)對(duì)應(yīng)的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時(shí),飛機(jī)才能停下來(lái).故答案為1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用.解題時(shí),利用配方法求得t=2時(shí),s取最大值.16、答案不唯一,如:AD【解析】
根據(jù)勾股定理求出,根據(jù)無(wú)理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點(diǎn)睛】本題考查了無(wú)理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是,,斜邊長(zhǎng)為,那么.17、-3<x<1【解析】試題分析:根據(jù)拋物線的對(duì)稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對(duì)稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對(duì)稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.18、3【解析】如圖,連接BB′,∵△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長(zhǎng)BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點(diǎn).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)一個(gè)A品牌的足球需90元,則一個(gè)B品牌的足球需100元;(2)1.【解析】
(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,根據(jù)“購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【詳解】(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,依題意得:,解得:.答:一個(gè)A品牌的足球需40元,則一個(gè)B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用是1元.考點(diǎn):二元一次方程組的應(yīng)用.20、(1)①證明見解析;②10;(2)線段EF的長(zhǎng)度不變,它的長(zhǎng)度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點(diǎn)Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=12PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點(diǎn):翻折變換(折疊問(wèn)題);矩形的性質(zhì);相似形綜合題.21、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過(guò)E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過(guò)△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;
(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過(guò)E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點(diǎn)睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.22、證明見解析.【解析】【分析】利用AAS先證明?ABH≌?DCG,根據(jù)全等三角形的性質(zhì)可得AH=DG,再根據(jù)AH=AG+GH,DG=DH+GH即可證得AG=HD.【詳解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.23、(1)50人;(2)補(bǔ)全圖形見解析,表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總?cè)藬?shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總?cè)藬?shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調(diào)查的總?cè)藬?shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補(bǔ)全圖形如下:表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個(gè)可能的結(jié)果,恰好選中甲的結(jié)果有6個(gè),∴P(恰好選中甲)=.點(diǎn)睛:本題主要考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖以及概率的計(jì)算法則,屬于基礎(chǔ)題型.理解頻數(shù)、頻率與樣本容量之間的關(guān)系是解題的關(guān)鍵.24、(1)證明見解析;(2)AD=;(3)DG=.【解析】
(1)連接OD,由AD為角平分線得到一對(duì)角相等,再由等邊對(duì)等角得到一對(duì)角相等,等量代換得到內(nèi)錯(cuò)角相等,進(jìn)而得到OD與AC平行,得到OD與BC垂直,即可得證;
(2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對(duì)的圓周角,進(jìn)而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;
(3)連接EF,設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對(duì)的圓周角為直角,得到EF與BC平行,得到sin∠AEF=sinB,進(jìn)而求出DG的長(zhǎng)即可.【詳解】(1)如圖,連接OD,∵AD為∠BAC的角平分線,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC為圓O的切線;(2)連接DF,由(1)知BC為圓O的切線,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB?AF=xy,則AD=;(3)連接EF,在Rt△BOD中,sinB=,設(shè)圓的半徑為r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直徑,∴∠A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師培訓(xùn)課件:高中新課程與音樂課程標(biāo)準(zhǔn)
- 盆腔淤血綜合征的健康宣教
- 八年級(jí)英語(yǔ)FriendsGrammar課件
- 《C語(yǔ)言程序設(shè)計(jì)d》課件-第四講-函數(shù)
- 特發(fā)性腹膜后纖維化的健康宣教
- 瘰疬分枝桿菌感染的臨床護(hù)理
- 慢性纖維性甲狀腺炎的臨床護(hù)理
- 中華優(yōu)xiu傳統(tǒng)文化(山東經(jīng)貿(mào)職業(yè)學(xué)院)知到智慧樹答案
- 《數(shù)據(jù)處理及誤差》課件
- 運(yùn)營(yíng)管理團(tuán)隊(duì)協(xié)作培訓(xùn)
- 2024至2030年中國(guó)芯片原子鐘行業(yè)調(diào)查及市場(chǎng)前景咨詢報(bào)告
- 2024湖南株洲市天元區(qū)招聘社區(qū)專職工作者筆試歷年典型考題及考點(diǎn)剖析附答案帶詳解
- 弱電智能化工程技術(shù)方案
- TZSA 225-2024 高導(dǎo)熱膜用石墨烯材料應(yīng)用指南
- 第七課《循環(huán)程序》教學(xué)設(shè)計(jì) 2023-2024學(xué)年新世紀(jì)版(2018)初中信息技術(shù)八年級(jí)上冊(cè)
- 人教版八年級(jí)音樂上冊(cè) 第二單元 《動(dòng)物世界》片頭曲教案
- 曲式與作品分析智慧樹知到期末考試答案章節(jié)答案2024年內(nèi)蒙古藝術(shù)學(xué)院
- 人工智能與未來(lái)教育智慧樹知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- 2024年中考英語(yǔ)二輪復(fù)習(xí):語(yǔ)法填空講解
- 數(shù)據(jù)結(jié)構(gòu)智慧樹知到期末考試答案章節(jié)答案2024年中央財(cái)經(jīng)大學(xué)
- 中國(guó)血脂管理指南(基層版2024年)
評(píng)論
0/150
提交評(píng)論