版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省無錫新區(qū)六校聯(lián)考2021-2022學(xué)年中考數(shù)學(xué)押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.的倒數(shù)的絕對(duì)值是()A. B. C. D.3.已知一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形4.如圖,AB是⊙O的直徑,點(diǎn)C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°5.如果實(shí)數(shù)a=,且a在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,其中正確的是()A.B.C.D.6.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.67.sin45°的值等于()A. B.1 C. D.8.罰球是籃球比賽中得分的一個(gè)組成部分,罰球命中率的高低對(duì)籃球比賽的結(jié)果影響很大.如圖是對(duì)某球員罰球訓(xùn)練時(shí)命中情況的統(tǒng)計(jì):下面三個(gè)推斷:①當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③9.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡(jiǎn)|a+b|﹣|c﹣b|的結(jié)果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c10.某校40名學(xué)生參加科普知識(shí)競(jìng)賽(競(jìng)賽分?jǐn)?shù)都是整數(shù)),競(jìng)賽成績(jī)的頻數(shù)分布直方圖如圖所示,成績(jī)的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分二、填空題(共7小題,每小題3分,滿分21分)11.口袋中裝有4個(gè)小球,其中紅球3個(gè),黃球1個(gè),從中隨機(jī)摸出兩球,都是紅球的概率為_________.12.如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(1)AB的長(zhǎng)等于____;(2)在△ABC的內(nèi)部有一點(diǎn)P,滿足S△PABS△PBCS△PCA=1:2:3,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡(jiǎn)要說明點(diǎn)P的位置是如何找到的(不要求證明)_______13.在平面直角坐標(biāo)系中,如果點(diǎn)P坐標(biāo)為(m,n),向量可以用點(diǎn)P的坐標(biāo)表示為=(m,n),已知:=(x1,y1),=(x2,y2),如果x1?x2+y1?y2=0,那么與互相垂直,下列四組向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正確答案的符號(hào)).14.已知三個(gè)數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.15.若不等式組的解集為,則________.16.同學(xué)們?cè)O(shè)計(jì)了一個(gè)重復(fù)拋擲的實(shí)驗(yàn):全班48人分為8個(gè)小組,每組拋擲同一型號(hào)的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計(jì)各小組的實(shí)驗(yàn)結(jié)果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數(shù)16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據(jù)實(shí)驗(yàn),你認(rèn)為這一型號(hào)的瓶蓋蓋面朝上的概率為____,理由是:____.17.二次根式在實(shí)數(shù)范圍內(nèi)有意義,x的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,健民體育活動(dòng)中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?根據(jù)健民體育活動(dòng)中心消費(fèi)者的需求量,活動(dòng)中心決定用不超過2550元錢購進(jìn)甲、乙兩種羽毛球共50筒,那么最多可以購進(jìn)多少筒甲種羽毛球?19.(5分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長(zhǎng);設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.20.(8分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問題:當(dāng)轎車剛到乙地時(shí),此時(shí)貨車距離乙地千米;當(dāng)轎車與貨車相遇時(shí),求此時(shí)x的值;在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時(shí),求x的值.21.(10分)計(jì)算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.22.(10分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫出△PMN面積的最大值.23.(12分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對(duì)風(fēng)電塔桿進(jìn)行了測(cè)量,甲同學(xué)站在平地上的A處測(cè)得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測(cè)得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長(zhǎng)度為15米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)24.(14分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進(jìn)行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對(duì)邊相互平行的四邊形是平行四邊形);過點(diǎn)分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對(duì)角相等),故正確;,(平行四邊形的對(duì)邊相等),故正確;如果四邊形是矩形時(shí),該等式成立.故不一定正確.故選:.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.2、D【解析】
直接利用倒數(shù)的定義結(jié)合絕對(duì)值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對(duì)值是:.故答案選:D.【點(diǎn)睛】本題考查了倒數(shù)的定義與絕對(duì)值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對(duì)值的性質(zhì).3、D【解析】
根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設(shè)多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點(diǎn)睛】此題考查多邊形內(nèi)角與外角,解題關(guān)鍵在于掌握其定理.4、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對(duì)角互補(bǔ)得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對(duì)的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點(diǎn)睛】本題考查圓中的角度計(jì)算,熟練運(yùn)用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.5、C【解析】分析:估計(jì)的大小,進(jìn)而在數(shù)軸上找到相應(yīng)的位置,即可得到答案.詳解:由被開方數(shù)越大算術(shù)平方根越大,即故選C.點(diǎn)睛:考查了實(shí)數(shù)與數(shù)軸的的對(duì)應(yīng)關(guān)系,以及估算無理數(shù)的大小,解決本題的關(guān)鍵是估計(jì)的大小.6、B【解析】
先根據(jù)矩形的特點(diǎn)設(shè)出B、C的坐標(biāo),根據(jù)矩形的面積求出B點(diǎn)橫縱坐標(biāo)的積,由D為AB的中點(diǎn)求出D點(diǎn)的橫縱坐標(biāo),再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點(diǎn)睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.7、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)的應(yīng)用,能熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵,難度適中.8、B【解析】
根據(jù)圖形和各個(gè)小題的說法可以判斷是否正確,從而解答本題【詳解】當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以此時(shí)“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯(cuò)誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯(cuò)誤.故選:B.【點(diǎn)睛】此題考查了頻數(shù)和頻率的意義,解題的關(guān)鍵在于利用頻率估計(jì)概率.9、C【解析】
首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對(duì)值的定義去掉絕對(duì)值符號(hào)后化簡(jiǎn)即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.10、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個(gè),則其中位數(shù)為第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個(gè),則其中位數(shù)為第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點(diǎn)睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關(guān)鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
先畫出樹狀圖,用隨意摸出兩個(gè)球是紅球的結(jié)果個(gè)數(shù)除以所有可能的結(jié)果個(gè)數(shù)即可.【詳解】∵從中隨意摸出兩個(gè)球的所有可能的結(jié)果個(gè)數(shù)是12,隨意摸出兩個(gè)球是紅球的結(jié)果個(gè)數(shù)是6,∴從中隨意摸出兩個(gè)球的概率=;故答案為:.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.12、;答案見解析.【解析】
(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點(diǎn)D、E,取格點(diǎn)F,連接FB并且延長(zhǎng),與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點(diǎn)P,點(diǎn)P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.13、①③④【解析】分析:根據(jù)兩個(gè)向量垂直的判定方法一一判斷即可;詳解:①∵2×(?1)+1×2=0,∴與垂直;②∵∴與不垂直.③∵∴與垂直.④∵∴與垂直.故答案為:①③④.點(diǎn)睛:考查平面向量,解題的關(guān)鍵是掌握向量垂直的定義.14、±1【解析】
先由平均數(shù)的計(jì)算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進(jìn)行計(jì)算,即可求出x的值.【詳解】解:這三個(gè)數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點(diǎn)睛】本題考查方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.15、-1【解析】分析:解出不等式組的解集,與已知解集-1<x<1比較,可以求出a、b的值,然后相加求出2009次方,可得最終答案.詳解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案為-1.點(diǎn)睛:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當(dāng)作已知處理,求出解集與已知解集比較,進(jìn)而求得零一個(gè)未知數(shù).16、0.532,在用頻率估計(jì)概率時(shí),試驗(yàn)次數(shù)越多越接近,所以取1﹣8組的頻率值.【解析】
根據(jù)用頻率估計(jì)概率解答即可.【詳解】∵在用頻率估計(jì)概率時(shí),試驗(yàn)次數(shù)越多越接近,所以取1﹣8組的頻率值,∴這一型號(hào)的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計(jì)概率時(shí),試驗(yàn)次數(shù)越多越接近,所以取1﹣8組的頻率值.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率的知識(shí),解答此題關(guān)鍵是用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.17、x≤1【解析】
根據(jù)二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點(diǎn)睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數(shù)必須是非負(fù)數(shù)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)該網(wǎng)店甲種羽毛球每筒的售價(jià)為60元,乙種羽毛球每筒的售價(jià)為45元;(2)最多可以購進(jìn)1筒甲種羽毛球.【解析】
(1)設(shè)該網(wǎng)店甲種羽毛球每筒的售價(jià)為x元,乙種羽毛球每筒的售價(jià)為y元,根據(jù)“甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費(fèi)255元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購進(jìn)甲種羽毛球m筒,則購進(jìn)乙種羽毛球(50﹣m)筒,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總費(fèi)用不超過2550元,即可得出關(guān)于m的一元一次不等式,解之取其最大值即可得出結(jié)論.【詳解】(1)設(shè)該網(wǎng)店甲種羽毛球每筒的售價(jià)為x元,乙種羽毛球每筒的售價(jià)為y元,依題意,得:,解得:.答:該網(wǎng)店甲種羽毛球每筒的售價(jià)為60元,乙種羽毛球每筒的售價(jià)為45元.(2)設(shè)購進(jìn)甲種羽毛球m筒,則購進(jìn)乙種羽毛球(50﹣m)筒,依題意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以購進(jìn)1筒甲種羽毛球.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.19、(1)證明見解析(2)(3)EP+EQ=EC【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長(zhǎng);作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點(diǎn)睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.20、(1)30;(2)當(dāng)x=3.9時(shí),轎車與貨車相遇;(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時(shí),x的值為3.5或4.3小時(shí).【解析】
(1)根據(jù)圖象可知貨車5小時(shí)行駛300千米,由此求出貨車的速度為60千米/時(shí),再根據(jù)圖象得出貨車出發(fā)后4.5小時(shí)轎車到達(dá)乙地,由此求出轎車到達(dá)乙地時(shí),貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時(shí)貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對(duì)應(yīng)的函數(shù)關(guān)系式,再根據(jù)兩直線的交點(diǎn)即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據(jù)圖象信息:貨車的速度V貨=,∵轎車到達(dá)乙地的時(shí)間為貨車出發(fā)后4.5小時(shí),∴轎車到達(dá)乙地時(shí),貨車行駛的路程為:4.5×60=270(千米),此時(shí),貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達(dá)乙地后,貨車距乙地30千米.故答案為30;(2)設(shè)CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當(dāng)x=3.9時(shí),轎車與貨車相遇;(3)當(dāng)x=2.5時(shí),y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時(shí).答:在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時(shí),x的值為3.5或4.3小時(shí).【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,對(duì)一次函數(shù)圖象的意義的理解,待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,行程問題中路程=速度×?xí)r間的運(yùn)用,本題有一定難度,其中求出貨車與轎車的速度是解題的關(guān)鍵.21、2+1【解析】
根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)以及絕對(duì)值的性質(zhì)分別化簡(jiǎn)各項(xiàng)后,再根據(jù)實(shí)數(shù)的運(yùn)算法則計(jì)算即可求解.【詳解】原式=-1+3+=-1+3+=2+1.【點(diǎn)睛】本題主要考查了實(shí)數(shù)運(yùn)算,根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)以及絕對(duì)值的性質(zhì)正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.22、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】
(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長(zhǎng)AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點(diǎn)睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運(yùn)用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會(huì)利用三角形的三邊關(guān)系解決最值問題,屬于中考?jí)狠S題.23、塔桿CH的高為42米【解析】
作BE⊥DH,知GH=BE、BG=EH=4,設(shè)AH=x,則BE=GH=23+x,由CH=AHtan∠CAH=tan55°?x知CE=CH-EH=tan55°?x-4,根據(jù)BE=DE可得關(guān)于x的方程,解之可得.【詳解】解:如圖,作BE⊥DH于點(diǎn)E,則GH=BE、BG=EH=4,設(shè)AH=x,則BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°?x﹣4+15,解得:x≈30,∴CH=tan55°?x=1.4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電工電子技術(shù)(第3版) 課件 5.1.1 半導(dǎo)體及PN結(jié)
- 2024年新型節(jié)能型內(nèi)燃機(jī)項(xiàng)目資金需求報(bào)告
- 銀行風(fēng)險(xiǎn)管理制度
- 采購合同管理及風(fēng)險(xiǎn)防范制度
- 《供給與局部均衡》課件
- 保護(hù)古老文明-課件
- 《計(jì)算中心編制》課件
- 法學(xué)案例-洛克菲勒中心案例都市綜合體
- 《促銷督導(dǎo)入門指引》課件
- 古詩詞誦讀《 書憤》課件 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修中冊(cè)
- 世界文化遺產(chǎn)-樂山大佛課件
- 2022小學(xué)一年級(jí)數(shù)學(xué)活用從不同角度解決問題測(cè)試卷(一)含答案
- 博爾赫斯簡(jiǎn)介課件
- 2021年山東交投礦業(yè)有限公司招聘筆試試題及答案解析
- 施工單位資料檢查內(nèi)容
- 大氣課設(shè)-酸洗廢氣凈化系統(tǒng)
- 學(xué)校校慶等大型活動(dòng)安全應(yīng)急預(yù)案
- 檢測(cè)公司檢驗(yàn)檢測(cè)工作控制程序
- 高血壓病例優(yōu)秀PPT課件
- 精密電主軸PPT課件
- C++課程設(shè)計(jì)設(shè)計(jì)一個(gè)排課程序
評(píng)論
0/150
提交評(píng)論