版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年湖北省襄陽市棗陽實驗中學中考二模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.2.實數(shù)的相反數(shù)是()A. B. C. D.3.如圖所示的幾何體,它的左視圖是()A. B. C. D.4.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對5.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經(jīng)過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關系的圖象是()A. B.C. D.6.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對7.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個8.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點B對應點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)9.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:摸球試驗次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計出m的值是()A.5 B.10 C.15 D.20二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).12.如果一個扇形的弧長等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.13.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結DC.如果AD=2,BD=6,那么△ADC的周長為.14.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.15.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.16.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側(cè)面積為_____.三、解答題(共8題,共72分)17.(8分)某工廠計劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表.種產(chǎn)品種產(chǎn)品成本(萬元件)25利潤(萬元件)13(1)若工廠計劃獲利14萬元,問,兩種產(chǎn)品應分別生產(chǎn)多少件?(2)若工廠計劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產(chǎn)方案?18.(8分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關于x的函數(shù)關系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.19.(8分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?20.(8分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.21.(8分)已知拋物線F:y=x1+bx+c的圖象經(jīng)過坐標原點O,且與x軸另一交點為(﹣33(1)求拋物線F的解析式;(1)如圖1,直線l:y=33x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x1,y1)(點A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判斷△AA′B的形狀,并說明理由;②平面內(nèi)是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數(shù)的圖象經(jīng)過點,求反比例函數(shù)的解析式;(3)當時,若直線與直線和(2)反比例函數(shù)的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.23.(12分)如圖,已知,.求證.24.在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.2、D【解析】
根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點睛】本題考查了實數(shù)的性質(zhì),在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).3、A【解析】
從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,
故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.4、A【解析】
由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關鍵.5、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關系的圖象是選項D中的圖象.故選D.6、C【解析】
根據(jù)∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.7、B【解析】
根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關鍵.8、B【解析】
作出點A、B繞點C按順時針方向旋轉(zhuǎn)90°后得到的對應點,再順次連接可得△A1B1C,即可得到點B對應點B1的坐標.【詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點B對應點B1的坐標為(2,2).故選:B.【點睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應點位置是解題關鍵.圖形或點旋轉(zhuǎn)之后要結合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.9、C【解析】
根據(jù)二次函數(shù)的性質(zhì)逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C10、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒灤螖?shù)的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關系,從而得出答案.12、1【解析】試題分析:根據(jù)題意可得圓心角的度數(shù)為:,則S==1.考點:扇形的面積計算.13、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).14、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.15、.【解析】
由正六邊形的性質(zhì)得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質(zhì)得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質(zhì)得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質(zhì)、等腰三角形的判定、含30°角的直角三角形的性質(zhì)等知識;熟練掌握正六邊形的性質(zhì)和含30°角的直角三角形的性質(zhì)是解題的關鍵.16、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據(jù)圓錐的側(cè)面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側(cè)面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側(cè)面積的計算方法.解題的關鍵是熟記圓錐的側(cè)面展開扇形的面積計算方法.三、解答題(共8題,共72分)17、(1)生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【解析】
(1)設生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,根據(jù)“工廠計劃獲利14萬元”列出方程即可得出結論;(2)設生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,根據(jù)題意,列出一元一次不等式組,求出y的取值范圍,即可求出方案.【詳解】解:(1)設生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,依題意得:,解得:,則,答:生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)設生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,解得:.因為為正整數(shù),故或3;答:共有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【點睛】此題考查的是一元一次方程的應用和一元一次不等式組的應用,掌握實際問題中的等量關系和不等關系是解決此題的關鍵.18、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】
(1)根據(jù)函數(shù)圖象可以得出出租車的起步價是8元,設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),運用待定系數(shù)法就可以求出結論;
(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),由函數(shù)圖象,得,解得:故y與x的函數(shù)關系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.19、(1)40(2)126°,1(3)940名【解析】
(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總?cè)藬?shù)乘以對應的百分比即可求解.【詳解】(1)學生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有940名.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.20、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關于原點中心對稱,則四邊形為平行四邊形.當時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設過點三點的拋物線,則解之,得∴所求拋物線的表達式為.21、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B為等邊三角形,理由見解析;②平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣【解析】
(1)根據(jù)點的坐標,利用待定系數(shù)法即可求出拋物線F的解析式;(1)將直線l的解析式代入拋物線F的解析式中,可求出x1、x1的值,利用一次函數(shù)圖象上點的坐標特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根據(jù)m的值可得出點A、B的坐標,利用對稱性求出點A′的坐標.①利用兩點間的距離公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B為等邊三角形;②根據(jù)等邊三角形的性質(zhì)結合菱形的性質(zhì),可得出存在符合題意得點P,設點P的坐標為(x,y),分三種情況考慮:(i)當A′B為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標;(ii)當AB為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標;(iii)當AA′為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標.綜上即可得出結論.【詳解】(1)∵拋物線y=x1+bx+c的圖象經(jīng)過點(0,0)和(﹣33∴c=013-∴拋物線F的解析式為y=x1+33(1)將y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴點A的坐標為(﹣233,23∵點A′是點A關于原點O的對稱點,∴點A′的坐標為(233,﹣①△AA′B為等邊三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B為等邊三角形.②∵△AA′B為等邊三角形,∴存在符合題意的點P,且以點A、B、A′、P為頂點的菱形分三種情況,設點P的坐標為(x,y).(i)當A′B為對角線時,有x-2解得x=2∴點P的坐標為(13,23(ii)當AB為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣233,(iii)當AA′為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣23綜上所述:平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣233【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)圖象上點的坐標特征、等邊三角形的判定與性質(zhì)以及菱形的判定與性質(zhì),解題的關鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式;(1)將一次函數(shù)解析式代入二次函數(shù)解析式中求出x1、x1的值;(3)①利用勾股定理(兩點間的距離公式)求出AB、AA′、A′B的值;②分A′B為對角線、AB為對角線及AA′為對角線三種情況求出點P的坐標.22、(1),;(2);的取值范圍是:.【解析】
(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數(shù)的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【詳解】解:(1)∵直線:經(jīng)過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點,當有兩個函數(shù)的時候,著重使用一次函數(shù),體現(xiàn)了方程思想,綜合性較強.23、見解析【解析】
根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB
∴∠ABD+∠DBC=∠DCA+∠ACB
即∠ABC=∠DCB
在△ABC和△DCB中
∴△ABC≌△DCB(ASA)
∴AB=DC【點睛】本題主要考查學生對全等三角形的判定與性質(zhì)的理解和掌握,證明此題的關鍵是求證△ABC≌△DCB.難度不大,屬于基礎題.24、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版白酒銷售顧問銷售數(shù)據(jù)分析合同3篇
- 2025年度個人自用房產(chǎn)交易合同范本4篇
- 二零二五版建筑公司員工勞動合同范本3篇
- 一個簡短的自我介紹四篇
- 2024年中級經(jīng)濟師考試題庫含答案(b卷)
- 擋墻及護坡施工方案
- 訓練音樂節(jié)奏課程設計
- 2025年度退休員工專業(yè)培訓與指導合同3篇
- 輸電線路防雷施工方案
- 二零二五版合伙購買二手房裝修及改造協(xié)議3篇
- 中小銀行上云趨勢研究分析報告
- 機電安裝工程安全培訓
- 洗浴部前臺收銀員崗位職責
- 2024年輔警考試公基常識300題(附解析)
- GB/T 43650-2024野生動物及其制品DNA物種鑒定技術規(guī)程
- 暴發(fā)性心肌炎查房
- 工程質(zhì)保金返還審批單
- 【可行性報告】2023年電動自行車項目可行性研究分析報告
- 五月天歌詞全集
- 商品退換貨申請表模板
- 實習單位鑒定表(模板)
評論
0/150
提交評論