版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)教案【13篇】高中數(shù)學(xué)教案篇一一、課程性質(zhì)與任務(wù)數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識,具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識、創(chuàng)新意識和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)了解:初步知道知識的含義及其簡單應(yīng)用。理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律??臻g想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))第2單元不等式(8學(xué)時(shí))第3單元函數(shù)(12學(xué)時(shí))第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時(shí))第5單元三角函數(shù)(18學(xué)時(shí))第6單元數(shù)列(10學(xué)時(shí))第7單元平面向量(矢量)(10學(xué)時(shí))第8單元直線和圓的方程(18學(xué)時(shí))第9單元立體幾何(14學(xué)時(shí))第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))2.職業(yè)模塊第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))高中數(shù)學(xué)教案篇二教學(xué)準(zhǔn)備教學(xué)目標(biāo)熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。教學(xué)重難點(diǎn)熟練兩角和與差的正、余弦公式的`正用、逆用和變用技巧。教學(xué)過程復(fù)習(xí)兩角差的余弦公式用-B代替B看看有什么結(jié)果?高中數(shù)學(xué)教案篇三各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評價(jià)六方面進(jìn)行說課。一、教材分析(一)教材的地位和作用“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。(二)教學(xué)內(nèi)容本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。二、教學(xué)目標(biāo)分析根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。三、重難點(diǎn)分析一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。四、教法與學(xué)法分析(一)學(xué)法指導(dǎo)教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。(二)教法分析本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。五、課堂設(shè)計(jì)本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。為此,我設(shè)計(jì)了以下幾個(gè)問題:1、請同學(xué)們解以下方程和不等式:①2x-7=0;②2x-70;③2x-70學(xué)生回答,我板書。2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸交點(diǎn)的橫坐標(biāo)。②2x-70的解集正是函數(shù)y=2x-7的圖象在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。③2x-70的解集正是函數(shù)y=2x-7的圖象在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。(二)比舊悟新,引出“三個(gè)二次”的關(guān)系為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看說一說問一問”的思路進(jìn)行探究??春瘮?shù)y=x2-x-6的圖象并說出:①方程x2-x-6=0的解是x=-2或x=3;②不等式x2-x-60的解集是{x|x-2,或x3};③不等式x2-x-60的解集是{x|-23}。此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?(三)歸納提煉,得出“三個(gè)二次”的關(guān)系1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)(四)應(yīng)用新知,熟練掌握一元二次不等式的解集借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:例1、解不等式2x2-3x-20解:因?yàn)棣?,方程2x2-3x-2=0的解是x1=,x2=2所以,不等式的解集是{x|x,或x2}例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。下面我們接著學(xué)習(xí)課本例2。例2解不等式-3x2+6x2課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。例3解不等式4x2-4x+10例4解不等式-x2+2x-30分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。(五)總結(jié)解一元二次不等式的“四部曲”:(1)把二次項(xiàng)的系數(shù)化為正數(shù)(2)計(jì)算判別式Δ(3)解對應(yīng)的一元二次方程(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集(六)作業(yè)布置為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。(1)必做題:習(xí)題1.5的1、3題(2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。(七)板書設(shè)計(jì)一元二次不等式解法(1)五、教學(xué)效果評價(jià)本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。高中數(shù)學(xué)教案篇四教學(xué)目標(biāo):(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化(2)理解直線與二元一次方程的關(guān)系及其證明(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn)教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程(不同時(shí)為0)的對應(yīng)關(guān)系及其證明教學(xué)用具:計(jì)算機(jī)教學(xué)方法:啟發(fā)引導(dǎo)法,討論法教學(xué)過程:下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:教學(xué)設(shè)計(jì)思路:(一)引入的設(shè)計(jì)前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)??各小組可以討論討論。學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:【問題1】“任意直線的方程都是二元一次方程嗎?”(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:思路一:…思路二:…教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。綜合兩種情況,我們得出如下結(jié)論:在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”。同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。這樣上邊的結(jié)論可以表述如下:在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?【問題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?師生共同討論,評價(jià)不同思路,達(dá)成共識:回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對應(yīng)斜率是否存在,即(1)當(dāng)時(shí),方程可化為這是表示斜率為、在軸上的截距為的直線。(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為這表示一條與軸垂直的直線。因此,得到結(jié)論:在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。為方便,我們把(其中不同時(shí)為0)稱作直線方程的一般式是合理?!緞赢嬔菔尽垦菔尽爸本€各參數(shù)”文件,體會任何二元一次方程都表示一條直線。至此,我們的第二個(gè)問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問題其實(shí)是一個(gè)大問題的兩個(gè)方面,這個(gè)大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)略高中數(shù)學(xué)教案篇五1.教學(xué)目標(biāo)(1)知識目標(biāo):1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程。(2)能力目標(biāo):1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識。(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。2.教學(xué)重點(diǎn)。難點(diǎn)(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。(2)教學(xué)難點(diǎn):會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。3.教學(xué)過程(一)創(chuàng)設(shè)情境(啟迪思維)問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?[引導(dǎo)]畫圖建系[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2y2=16(y≥0)將x=2.7代入,得。即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。(二)深入探究(獲得新知)問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?答:x2y2=r22.如果圓心在,半徑為時(shí)又如何呢?[學(xué)生活動]探究圓的方程。[教師預(yù)設(shè)]方法一:坐標(biāo)法如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為①把①式兩邊平方,得(x―a)2(y―b)2=r2方法二:圖形變換法方法三:向量平移法(三)應(yīng)用舉例(鞏固提高)i.直接應(yīng)用(內(nèi)化新知)問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)(1)圓心在原點(diǎn),半徑為3;(2)圓心在,半徑為;(3)經(jīng)過點(diǎn),圓心在點(diǎn)。2.根據(jù)圓的方程寫出圓心和半徑ii.靈活應(yīng)用(提升能力)問題四:1.求以為圓心,并且和直線相切的圓的方程。[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓。2.已知圓的方程為,求過圓上一點(diǎn)的切線方程。[學(xué)生活動]探究方法[教師預(yù)設(shè)]方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)方法三:軌跡法(利用勾股定理列關(guān)系式)[多媒體課件演示]方法四:軌跡法(利用向量垂直列關(guān)系式)3.你能歸納出具有一般性的結(jié)論嗎?已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:.iii.實(shí)際應(yīng)用(回歸自然)問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0.01m).[多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境](四)反饋訓(xùn)練(形成方法)問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程3.求圓x2y2=13過點(diǎn)(-2,3)的切線方程4.已知圓的方程為,求過點(diǎn)的切線方程高中數(shù)學(xué)教案教學(xué)設(shè)計(jì)篇六高中數(shù)學(xué)第一冊(上)1.1集合(一)教學(xué)案例教學(xué)目標(biāo):1、理解集合、集合的元素的概念;2、了解集合的元素的三個(gè)特性;3、記憶常用數(shù)集的表示;4、會判斷元素與集合的關(guān)系,集合(一)教學(xué)案例。教學(xué)重點(diǎn):1、集合的概念;2、集合的元素的三個(gè)特征性質(zhì)教學(xué)難點(diǎn):1、集合的元素的三個(gè)特性;2、數(shù)集與數(shù)集的關(guān)系課前準(zhǔn)備:1、教具準(zhǔn)備:多媒體制作數(shù)學(xué)家康托介紹,包括頭像、生平、對數(shù)學(xué)發(fā)展所作的貢獻(xiàn);本節(jié)課所需的例題、圖形等。2、布置學(xué)生預(yù)習(xí)1.1集合。教學(xué)設(shè)計(jì):一、[創(chuàng)設(shè)情境]多媒體展示激發(fā)興趣:為科學(xué)而瘋的人——康托托康(Contor,Georg)(1845-1918),俄羅斯—德國數(shù)學(xué)家、19世紀(jì)數(shù)學(xué)偉大成就之一—集合論的創(chuàng)立人??低猩抖韲}彼得堡,父母親是丹_,父親出生於丹_都哥本哈根,是一個(gè)富裕的商人,他的母親瑪麗具有藝術(shù)家血統(tǒng),他父母親年輕時(shí)移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因?yàn)榭低卸啻胃淖儑?,許多國家都認(rèn)為康托的成就都是它們培養(yǎng)出來的??低凶杂讓?shù)學(xué)有濃厚興趣。23歲獲博士學(xué)位,以后一直從事數(shù)學(xué)教學(xué)與研究。他所創(chuàng)立的集合論已被公認(rèn)為全部數(shù)學(xué)的基礎(chǔ)。1874年康托的有關(guān)無窮的概念,震撼了知識界??低袘{借古代與中世紀(jì)哲學(xué)著作中關(guān)于無限的思想而導(dǎo)出了關(guān)于數(shù)的本質(zhì)新的思想模式,建立了處理數(shù)學(xué)中的無限的基本技巧,從而極大地推動了分析與邏輯的發(fā)展。他研究數(shù)論和用三角函數(shù)地表示函數(shù)等問題,發(fā)現(xiàn)了驚人的結(jié)果:證明有理數(shù)是可列的,而全體實(shí)數(shù)是不可列的。由于研究無窮時(shí)往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學(xué)家唯恐陷進(jìn)去而采取退避三舍的態(tài)度。在1874—1876年期間,不到30歲的康托向神秘的無窮宣戰(zhàn)。他靠著辛勤的汗水,成功地證明了一條直線上的點(diǎn)能夠和一個(gè)平面上的點(diǎn)一一對應(yīng),也能和空間中的點(diǎn)一一對應(yīng)。這樣看起來,1厘米長的線段內(nèi)的點(diǎn)與太平洋面上的點(diǎn),以及整個(gè)地球內(nèi)部的點(diǎn)都“一樣多”,后來幾年,康托對這類“無窮集合”問題發(fā)表了一系列文章,通過嚴(yán)格證明得出了許多驚人的結(jié)論。康托的創(chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托的集合論是一種“疾病”,康托的概念是“霧中之霧”,甚至說康托是“瘋子”。來自數(shù)學(xué)_的巨大精神壓力終于摧垮了康托,使他心力交瘁,患了精神_,被送進(jìn)精神病醫(yī)院。他在集合論方面許多非常出色的成果,都是在精神病發(fā)作的間歇時(shí)期獲得的。真金不怕火煉,康托的思想終于大放光彩。1897年舉行的第一次國際數(shù)學(xué)家會議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托的工作“可能是這個(gè)代所能夸耀的最巨大的工作?!笨墒沁@時(shí)康托仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托在一家精神病院去世。今天,我們將學(xué)習(xí)高中數(shù)學(xué)第一章集合與簡易邏輯的1.1集合(一),讓我們回顧一下初中涉及到集合的有關(guān)知識。二、[復(fù)習(xí)舊知識]復(fù)習(xí)提問:1.在初中,我們學(xué)過哪些集合?實(shí)數(shù)集、二元一次方程的解集、不等式(組)的解集、點(diǎn)的集合等。2.在初中,我們用集合描述過什么?角平分線、線段的垂直平分線、圓、圓的內(nèi)部、圓的外部等。實(shí)數(shù)有理數(shù)無理數(shù)整數(shù)分?jǐn)?shù)正無理數(shù)負(fù)無理數(shù)正分?jǐn)?shù)負(fù)分?jǐn)?shù)負(fù)整數(shù)自然數(shù)正整數(shù)零3.實(shí)數(shù)的分類3、實(shí)數(shù)的分類:實(shí)數(shù)正實(shí)數(shù)負(fù)實(shí)數(shù)零4、以下由學(xué)生完成:(1)、把下列各數(shù)填入相應(yīng)的圈內(nèi)0、、2.5、、、-6、、8%、19整數(shù)集合分?jǐn)?shù)集合無理數(shù)集合(2)。把下列各數(shù)填入相應(yīng)的大括號內(nèi)1、-10、、、-2、3.6、、—0.1、8、負(fù)有理數(shù)集合:{}整數(shù)集合:{}正實(shí)數(shù)集:{}無理數(shù)集:{}3、解不等式組(1)2x-3〈54、絕對值小于3的整數(shù)是—————————————————三、[學(xué)習(xí)互動]1、觀察下列對象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)與一個(gè)角的兩邊距離相等的點(diǎn);(4)滿足x-3>2的全體實(shí)數(shù);(5)本班全體男生;(6)我國古代四大發(fā)明;(7)2024年本省高考考試科目;(8)2024年奧運(yùn)會的球類項(xiàng)目,《集合(一)教學(xué)案例》通過學(xué)生觀察以上對象后,教師提問:[集合的概念](1)集合是什么?某些指定的對象集在一起就成為一個(gè)集合,簡稱集。(2)什么是集合的元素?集合中的每個(gè)對象叫做這個(gè)集合的元素。(3)集合、集合的元素怎樣表示?一般用大括號表示集合且常用大寫字母表示;集合中的元素用小寫字母表示。(4)集合中的元素與集合的關(guān)系a是集合A的元素,稱a屬于A,記作a∈A;a不是集合A的元素,稱a不屬于A,記作aA。2、探討下列問題(1){1,2,2,3}是含有1個(gè)1、2個(gè)2、1個(gè)3的集合嗎?(2)的科學(xué)家能構(gòu)成一個(gè)集合嗎?(3){a,b,c,d}與{b,c,d,a}是否表同一個(gè)集合?通過師生共同探討得出下面結(jié)論:通過師生共同探討得出結(jié)論:[集合中的元素的性質(zhì)]確定性:集合中的元素必須是確定的。集合的元素的特點(diǎn)互異性:集合中的元素必須是互異的。無序性:集合中的元素是無先后順序的。組成集合的元素可以是:數(shù)、圖、人、事物等。[常用數(shù)集的表示](1)自然數(shù)集:用N表示(2)正整數(shù)集:用N﹡或N+表示(3)整數(shù)集:用Z表示(4)有理數(shù)集:用Q表示(5)實(shí)數(shù)集:用R表示(正實(shí)數(shù)集用R_R+表示)四、[四、[互動參與]例1下面的各組對象能否構(gòu)成集合是()(A)所有的好人(B)小于2024的實(shí)數(shù)(C)和2024非常接近的數(shù)(D)方程x2-3x+2=0的根例2用符號填空(1)3.14Q(2)πQ(3)0N+(4)0N32(5)(-2)0N_6)Q3232(7)Z(8)—R五、[分層議練]1、選擇題(1)下列不能形成集合的是()A、所有三角形B、《高一數(shù)學(xué)》中的所有難題C、大于π的整數(shù)D、所以的無理數(shù)2、判斷正誤(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,則xN()(3)若xQ,則xR()(4)若xN,則xN+()常用數(shù)集屬于a∈AN、N_或N+)、Z、Q、R。集合集合的概念元素與集合的關(guān)系集合中元素的性質(zhì)確定性互異性無序性不屬于aA本節(jié)課設(shè)計(jì)的目的:通過創(chuàng)設(shè)情境激發(fā)學(xué)生的學(xué)習(xí)興趣,課前預(yù)習(xí)培養(yǎng)學(xué)生的自學(xué)能力;多媒體輔助教學(xué)提高課堂效益,使教學(xué)呈現(xiàn)方式多樣化;探索現(xiàn)代教學(xué)手段與高中數(shù)學(xué)教學(xué)的整合。高中數(shù)學(xué)教案篇七教學(xué)目標(biāo):1。理解并掌握瞬時(shí)速度的定義;2。會運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。教學(xué)重點(diǎn):會運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。教學(xué)難點(diǎn):理解瞬時(shí)速度和瞬時(shí)加速度的定義。教學(xué)過程:一、問題情境1、問題情境。平均速度:物體的運(yùn)動位移與所用時(shí)間的比稱為平均速度。問題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動的快慢程度。那么如何刻畫物體在某一時(shí)刻運(yùn)動的快慢程度?問題二跳水運(yùn)動員從10m高跳臺騰空到入水的過程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動員的速度。2、探究活動:(1)計(jì)算運(yùn)動員在2s到2.1s(t∈)內(nèi)的平均速度。(2)計(jì)算運(yùn)動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。(3)如何計(jì)算運(yùn)動員在更短時(shí)間內(nèi)的平均速度。探究結(jié)論:該常數(shù)可作為運(yùn)動員在2s時(shí)的瞬時(shí)速度。即t=2s時(shí),高度對于時(shí)間的瞬時(shí)變化率。二、建構(gòu)數(shù)學(xué)平均速度。設(shè)物體作直線運(yùn)動所經(jīng)過的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為??勺鳛槲矬w在時(shí)刻的速度的`近似值,?t越小,近似的程度就越好。所以當(dāng)t0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。三、數(shù)學(xué)運(yùn)用例1物體作自由落體運(yùn)動,運(yùn)動方程為,其中位移單位是m,時(shí)間單位是s求:(1)物體在時(shí)間區(qū)間s上的平均速度;(2)物體在時(shí)間區(qū)間上的平均速度;(3)物體在t=2s時(shí)的瞬時(shí)速度。分析解(1)將?t=0.1代入上式,得:=2.05g=20.5m/s。(2)將?t=0.01代入上式,得:=2.005g=20.05m/s。(3)當(dāng)t0,2+t2,從而平均速度的極限為:例2設(shè)一輛轎車在公路上作直線運(yùn)動,假設(shè)時(shí)的速度為,求當(dāng)時(shí)轎車的瞬時(shí)加速度。解∴當(dāng)?t無限趨于0時(shí),無限趨于,即=。練習(xí)課本P12—1,2。四、回顧小結(jié)問題1本節(jié)課你學(xué)到了什么?1、理解瞬時(shí)速度和瞬時(shí)加速度的定義;2、實(shí)際應(yīng)用問題中瞬時(shí)速度和瞬時(shí)加速度的求解;問題2解決瞬時(shí)速度和瞬時(shí)加速度問題需要注意什么?注意當(dāng)t0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?2、極限的思想方法。3、特殊到一般、從具體到抽象的推理方法。五、課外作業(yè)高中數(shù)學(xué)教案篇八整體設(shè)計(jì)教學(xué)分析我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題。前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值。后一個(gè)問題讓學(xué)生體會其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊。本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。三維目標(biāo)1、通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力。4、通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美。重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值。教學(xué)難點(diǎn)(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。課時(shí)安排3課時(shí)教學(xué)過程第1課時(shí)作者:路致芳導(dǎo)入新課思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。推進(jìn)新課新知探究提出問題(1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?(4)可否用一個(gè)式子表達(dá)呢?活動:教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價(jià)學(xué)生的思維。討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.(2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根。一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根。一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根。(3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根。(4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根。教師板書n次方根的意義:一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈正整數(shù)集。可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。提出問題(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路。討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)??偟膩砜矗@些數(shù)包括正數(shù),負(fù)數(shù)和零。(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù)。0的任何次方根都是0.(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù)。類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。②n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示。③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零。上面的文字語言可用下面的式子表示:a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在。零的n次方根為零,記為n0=0.可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。思考根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題。解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式。根式的概念:式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。如3-27中,3叫根指數(shù),-27叫被開方數(shù)。思考nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。解答:根據(jù)n次方根的意義,可得:(na)n=a.通過探究得到:n為奇數(shù),nan=a.n為偶數(shù),nan=|a|=a,-a,a≥0,ab)?;顒樱呵竽承┦阶拥闹担紫瓤紤]的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù)。解:(1)3(-8)3=-8;(2)(-10)2=10;(3)4(3-π)4=π-3;(4)(a-b)2=a-b(a>b)。點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用。變式訓(xùn)練求出下列各式的值:(1)7(-2)7;(2)3(3a-3)3(a≤1);(3)4(3a-3)4.解:(1)7(-2)7=-2,(2)3(3a-3)3(a≤1)=3a-3,(3)4(3a-3)4=點(diǎn)評:本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解。思路2例1下列各式中正確的是()A.4a4=aB.6(-2)2=3-2C.a0=1D.10(2-1)5=2-1活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答。解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=|a|,故A項(xiàng)錯(cuò)。(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò)。(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò)。(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確。所以答案選D.答案:D點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會有,因此解題時(shí)千萬要細(xì)心。例23+22+3-22=__________.活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,3-22=(2)2-22+1=(2-1)2=2-1,所以3+22+3-22=22.答案:22點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。思考上面的例2還有別的解法嗎?活動:教師引導(dǎo),去根號常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號后,相加正好抵消。同時(shí)借助平方差,又可去掉根號,因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。另解:利用整體思想,x=3+22+3-22,兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。變式訓(xùn)練若a2-2a+1=a-1,求a的取值范圍。解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,即a-1≥0,所以a≥1.點(diǎn)評:利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵。知能訓(xùn)練(教師用多媒體顯示在屏幕上)1、以下說法正確的是()A.正數(shù)的n次方根是一個(gè)正數(shù)B.負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù)C.0的n次方根是零D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)答案:C2、化簡下列各式:(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。3、計(jì)算7+40+7-40=__________.解析:7+40+7-40=(5)2+25?2+(2)2+(5)2-25?2+(2)2=(5+2)2+(5-2)2=5+2+5-2=25.答案:25拓展提升問題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請舉例說明。活動:組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義。通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下。再對a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的結(jié)論。解:(1)(na)n=a(n>1,n∈N)。如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。例如:(43)4=3,(3-5)3=-5.(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立。例如:525=2,5(-2)5=-2.當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。課堂小結(jié)學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。(1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。(2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示。(3)負(fù)數(shù)沒有偶次方根。0的任何次方根都是零。2、掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a0,a0,①;②a8=(a4)2=a4=,;③4a12=4(a3)4=a3=;④2a10=2(a5)2=a5=。(3)利用(2)的規(guī)律,你能表示下列式子嗎?,,,(x>0,m,n∈正整數(shù)集,且n>1)。(4)你能用方根的意義來解釋(3)的式子嗎?(5)你能推廣到一般的情形嗎?活動:學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時(shí)表揚(yáng),其他學(xué)生鼓勵(lì)提示。討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的。被開方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。(3)利用(2)的規(guī)律,453=,375=,5a7=,nxm=。(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。(5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。提出問題(1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?(2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?(3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?(4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會產(chǎn)生什么樣的后果?(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?活動:學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時(shí)作出評價(jià)。討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。(2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈=N+,n>1)。(3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。(4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。(5)若沒有a>0這個(gè)條件會怎樣呢?如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時(shí)負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時(shí),應(yīng)把負(fù)號移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。(6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q)。我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題。應(yīng)用示例例1求值:(1);(2);(3)12-5;(4)?;顒樱航處熞龑?dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。解:(1)=22=4;(2)=5-1=15;(3)12-5=(2-1)-5=2-1×(-5)=32;(4)=23-3=278.點(diǎn)評:本例主要考查冪值運(yùn)算,要按規(guī)定來解。在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。a3?a;a2?3a2;a3a(a>0)?;顒樱簩W(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié)。解:a3?a=a3?=;a2?3a2=a2?=;a3a=。點(diǎn)評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算。對于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。例3計(jì)算下列各式(式中字母都是正數(shù))。(1);(2)。活動:先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號,第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡化步驟。解:(1)原式=[2×(-6)÷(-3)]=4ab0=4a;(2)=m2n-3=m2n3.點(diǎn)評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。變式訓(xùn)練求值:(1)33?33?63;(2)627m3125n64.解:(1)33?33?63==32=9;(2)627m3125n64==9m225n4=925m2n-4.例4計(jì)算下列各式:(1)(325-125)÷425;(2)a2a?3a2(a>0)?;顒樱合扔蓪W(xué)生觀察以上兩個(gè)式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫出解答。解:(1)原式===65-5;(2)a2a?3a2==6a5.知能訓(xùn)練課本本節(jié)練習(xí)1,2,3【補(bǔ)充練習(xí)】教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚(yáng)鼓勵(lì)。1、(1)下列運(yùn)算中,正確的是()A.a2?a3=a6B.(-a2)3=(-a3)2C.(a-1)0=0D.(-a2)3=-a6(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()A.①②B.①③C.①②③④D.①③④(3)(34a6)2?(43a6)2等于()A.aB.a2C.a3D.a4(4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為()A.B.C.D.(5)化簡的結(jié)果是()A.6aB.-aC.-9aD.9a2、計(jì)算:(1)--17-2+-3-1+(2-1)0=__________.(2)設(shè)5x=4,5y=2,則52x-y=__________.3、已知x+y=12,xy=9且x0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。(2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。(3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q)。(4)說明兩點(diǎn):①分?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。②整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來計(jì)算。作業(yè)課本習(xí)題2.1A組2,4.設(shè)計(jì)感想本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù)。第3課時(shí)作者:鄭芳鳴導(dǎo)入新課思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪。思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識,對函數(shù)有了一個(gè)初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識,我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。推進(jìn)新課新知探究提出問題(1)我們知道2=1.41421356…,那么1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而1.42,1.415,1.4143,1.41422,…,是2的什么近似值?(2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律?2的過剩近似值的近似值1.511.180339891.429.8296353281.4159.7508518081.41439.739872621.414229.7386186431.4142149.7385246021.41421369.7385183321.414213579.7385178621.4142135639.738517752……的近似值2的不足近似值9.5182696941.49.6726699731.419.7351710391.4149.7383051741.41429.7384619071.414219.7385089281.4142139.7385167651.41421359.7385177051.414213569.7385177361.414213562……(3)你能給上述思想起個(gè)名字嗎?(4)一個(gè)正數(shù)的無理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過的知識,能作出判斷并合理地解釋嗎?(5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?活動:教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時(shí)評價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容:問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。問題(3)上述方法實(shí)際上是無限接近,最后是逼近。問題(4)對問題給予大膽猜測,從數(shù)軸的觀點(diǎn)加以解釋。問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。討論結(jié)果:(1)1.41,1.414,1.4142,1.41421,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.4143,1.41422,…,這些數(shù)都大于2,稱2的過剩近似值。(2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向逼近。第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向逼近。從另一角度來看這個(gè)問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向接近,可以說從兩個(gè)方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.4142,51.41421,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.4143,51.41422,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個(gè)實(shí)數(shù),即51.40,α是無理數(shù))是一個(gè)確定的實(shí)數(shù)。也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。提出問題(1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)?(2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢?(3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎?活動:教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納。對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對底數(shù)的規(guī)定,舉例說明。對問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。對問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會再造成混亂。(2)因?yàn)闊o理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則:①ar?as=ar+s(a>0,r,s都是無理數(shù))。②(ar)s=ars(a>0,r,s都是無理數(shù))。③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。(3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈R)。②(ar)s=ars(a>0,r,s∈R)。③(a?b)r=arbr(a>0,b>0,r∈R)。應(yīng)用示例例1利用函數(shù)計(jì)算器計(jì)算。(精確到0.001)(1)0.32.1;(2)3.14-3;(3);(4)?;顒樱航處熃虝W(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號-鍵,再按3,最后按=即可;對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。學(xué)生可以相互交流,挖掘計(jì)算器的用途。解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705.點(diǎn)評:熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。例2求值或化簡。(1)a-4b23ab2(a>0,b>0);(2)(a>0,b>0);(3)5-26+7-43-6-42.活動:學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時(shí)的評價(jià),注意總結(jié)解題的方法和規(guī)律。解:(1)a-4b23ab2==3b46a11。點(diǎn)評:根式的運(yùn)算常?;蓛绲倪\(yùn)算進(jìn)行,計(jì)算結(jié)果如沒有特殊要求,就用根式的形式來表示。高中數(shù)學(xué)教案篇九1.1.1任意角教學(xué)目標(biāo)(一)知識與技能目標(biāo)理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。(二)過程與能力目標(biāo)會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.(三)情感與態(tài)度目標(biāo)1.提高學(xué)生的推理能力;2.培養(yǎng)學(xué)生應(yīng)用意識.教學(xué)重點(diǎn)任意角概念的理解;區(qū)間角的集合的書寫.教學(xué)難點(diǎn)終邊相同角的集合的表示;區(qū)間角的集合的書寫.教學(xué)過程一、引入:1.回顧角的定義①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.二、新課:1.角的有關(guān)概念:①角的定義:角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.②角的名稱:③角的分類:A正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角④注意:⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;⑵零角的終邊與始邊重合,如果α是零角α=0°;⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角.⑤練習(xí):請說出角α、β、γ各是多少度?2.象限角的概念:①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角.例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;答:分別為1、2、3、4、1、2象限角.3.探究:教材P3面終邊相同的角的表示:所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=α+k·360°,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和.注意:⑴k∈Z⑵α是任一角;⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個(gè),它們相差360°的整數(shù)倍;⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.⑴-120°;⑵640°;⑶-950°12’.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48’,第二象限角;例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示).解:{α|α=90°+n·180°,n∈Z}.例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.4.課堂小結(jié)①角的定義;②角的分類:正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角③象限角;④終邊相同的角的表示法.5.課后作業(yè):①閱讀教材P2-P5;②教材P5練習(xí)第1-5題;③教材P.9習(xí)題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,解:??角屬于第三象限,?k·360°+180°<α<k·360°+270°(k∈Z)因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角.又k·180°+90°<各是第幾象限角?<k·180°+135°(k∈Z).<n·360°+135°(n∈Z),當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),屬于第二象限角<n·360°+315°(n∈Z),當(dāng)k為奇數(shù)時(shí),令k=2n+1(n∈Z),則n·360°+270°<此時(shí),屬于第四象限角因此屬于第二或第四象限角.1.1.2弧度制(一)教學(xué)目標(biāo)(二)知識與技能目標(biāo)理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).(三)過程與能力目標(biāo)能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問題(四)情感與態(tài)度目標(biāo)通過新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美.教學(xué)重點(diǎn)弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明.教學(xué)難點(diǎn)“角度制”與“弧度制”的區(qū)別與聯(lián)系.教學(xué)過程一、復(fù)習(xí)角度制:初中所學(xué)的角度制是怎樣規(guī)定角的度量的?規(guī)定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年事業(yè)單位人事管理合同編制與執(zhí)行細(xì)則全文2篇
- 2024墻紙批發(fā)及零售合作協(xié)議范本3篇
- 2024年度研發(fā)合作與技術(shù)成果轉(zhuǎn)化協(xié)議書3篇
- 2024年度砂子價(jià)格波動風(fēng)險(xiǎn)管理合同2篇
- 2024年度城市綠地綠化養(yǎng)護(hù)委托服務(wù)協(xié)議3篇
- 2024上海離婚子女護(hù)照權(quán)爭議解決合同范本6篇
- 2024年機(jī)動車銷售抵押貸款協(xié)議樣式版B版
- 2024年房產(chǎn)買賣協(xié)議標(biāo)準(zhǔn)版版
- 2024年建筑樁基工程勞務(wù)分包協(xié)議3篇
- 2024年版詳盡離婚合同模板:夫妻權(quán)益保障版B版
- 《基于Halbach分布的初級永磁直線電機(jī)的電磁設(shè)計(jì)與分析》
- 光伏發(fā)電項(xiàng)目管理述職報(bào)告
- 2024-2025學(xué)年高一【數(shù)學(xué)(人教A版)】數(shù)學(xué)建?;顒?1)-教學(xué)設(shè)計(jì)
- 2025年小學(xué)五年級數(shù)學(xué)(北京版)-分?jǐn)?shù)的意義(三)-3學(xué)習(xí)任務(wù)單
- 生物人教版(2024版)生物七年級上冊復(fù)習(xí)材料
- 中華人民共和國野生動物保護(hù)法
- 數(shù)字化轉(zhuǎn)型成熟度模型與評估(DTMM)國家標(biāo)準(zhǔn)解讀 2024
- 河南省名校八校聯(lián)考2024-2025學(xué)年高二上學(xué)期期中模擬考試語文試題(含答案解析)
- 第五單元觀察物體(一) (單元測試)-2024-2025學(xué)年二年級上冊數(shù)學(xué) 人教版
- 【初中生物】脊椎動物(魚)課件-2024-2025學(xué)年人教版(2024)生物七年級上冊
- 聘請專家的協(xié)議書(2篇)
評論
0/150
提交評論