江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷含解析_第1頁
江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷含解析_第2頁
江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷含解析_第3頁
江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷含解析_第4頁
江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省金湖縣重點名校2024年中考數學對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.2.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數量x(單位:本)之間的函數關系如圖所示,則下列結論錯誤的是()A.一次性購買數量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元3.的值是A. B. C. D.4.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數12421A.極差是3 B.眾數是4 C.中位數40 D.平均數是20.55.實數a在數軸上對應點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a6.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<107.二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<78.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)9.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a+a2=a310.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④11.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數據8,8,7,10,6,8,9的眾數和中位數都是8D.若甲組數據的方差S="0.01",乙組數據的方差s=0.1,則乙組數據比甲組數據穩(wěn)定12.已知,下列說法中,不正確的是()A. B.與方向相同C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在函數y=x-4中,自變量x的取值范圍是_____.14.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.15.如圖,邊長為的正方形紙片剪出一個邊長為m的正方形之后,剩余部分可剪拼成一個矩形,若拼成的矩形一邊長為4,則另一邊長為16.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環(huán)數相等,其中甲所得環(huán)數的方差為15,乙所得環(huán)數如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).17.化簡:12+31318.如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.20.(6分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.21.(6分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數量關系.經過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數量關系,并證明(3)拓展延伸在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.22.(8分)未成年人思想道德建設越來越受到社會的關注,遼陽青少年研究所隨機調查了本市一中學100名學生寒假中花零花錢的數量(錢數取整數元),以便引導學生樹立正確的消費觀.根據調查數據制成了頻分組頻數頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調查的樣本容量是;(3)研究所認為,應對消費150元以上的學生提出勤儉節(jié)約的建議.試估計應對該校1000名學生中約多少名學生提出這項建議.23.(8分)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如圖統(tǒng)計圖:根據統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調查中的學生人數是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數;(4)現有愛好舞蹈的兩名男生兩名女生想參加舞蹈社,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.24.(10分)每年4月23日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取20名學生,對每人每周用于課外閱讀的平均時間(單位:min)進行調查,過程如下:收集數據:30608150401101301469010060811201407081102010081整理數據:課外閱讀平均時間x(min)0≤x<4040≤x<8080≤x<120120≤x<160等級DCBA人數3a8b分析數據:平均數中位數眾數80mn請根據以上提供的信息,解答下列問題:(1)填空:a=,b=;m=,n=;(2)已知該校學生500人,若每人每周用于課外閱讀的平均時間不少于80min為達標,請估計達標的學生數;(3)設閱讀一本課外書的平均時間為260min,請選擇適當的統(tǒng)計量,估計該校學生每人一年(按52周計)平均閱讀多少本課外書?25.(10分)近年來,新能源汽車以其舒適環(huán)保、節(jié)能經濟的優(yōu)勢受到熱捧,隨之而來的就是新能汽車銷量的急速增加,當前市場上新能漂汽車從動力上分純電動和混合動力兩種,從用途上又分為乘用式和商用式兩種,據中國汽車工業(yè)協(xié)會提供的信息,2017年全年新能源乘用車的累計銷量為57.9萬輛,其中,純電動乘用車銷量為46.8萬輛,混合動力乘用車銷量為11.1萬輛;2017年全年新能源商用車的累計銷量為19.8萬輛,其中,純電動商用車銷量為18.4萬輛,混合動力商用車銷量為1.4萬輛,請根據以上材料解答下列問題:(1)請用統(tǒng)計表表示我國2017年新能源汽車各類車型銷量情況;(2)小穎根據上述信息,計算出2017年我國新能源各類車型總銷量為77.7萬輛,并繪制了“2017年我國新能源汽車四類車型銷量比例”的扇形統(tǒng)計圖,如圖1,請你將該圖補充完整(其中的百分數精確到0.1%);(3)2017年我國新能源乘用車銷量最高的十個城市排名情況如圖2,請根據圖2中信息寫出這些城市新能源乘用車銷售情況的特點(寫出一條即可);(4)數據顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準,參加社會實踐的大學生小王想對其中兩個廠家進行深入調研,他將四個完全相同的乒乓球進行編號(用“1,2,3,4”依次對應上述四個廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個乒乓球,根據乒乓球上的編號決定要調研的廠家.求小王恰好調研“比亞迪”和“江淮”這兩個廠家的概率.26.(12分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.27.(12分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.2、D【解析】

A、根據單價=總價÷數量,即可求出一次性購買數量不超過10本時,銷售單價,A選項正確;C、根據單價=總價÷數量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據總價=200+超過10本的那部分書的數量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數的應用,根據一次函數圖象結合數量關系逐一分析四個選項的正誤是解題的關鍵.3、D【解析】

根據特殊角三角函數值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.4、C【解析】

極差、中位數、眾數、平均數的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數據的極差是:60-25=35,故本選項錯誤;

B、40出現的次數最多,出現了4次,則眾數是40,故本選項錯誤;

C、把這些數從小到大排列,最中間兩個數的平均數是(40+40)÷2=40,則中位數是40,故本選項正確;

D、這組數據的平均數(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【點睛】本題考查了極差、平均數、中位數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.5、D【解析】

根據實數a在數軸上的位置,判斷a,﹣a,a2在數軸上的相對位置,根據數軸上右邊的數大于左邊的數進行判斷.【詳解】由數軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數的大小比較,解答本題的關鍵是根據數軸判斷出a,﹣a,a2的位置.6、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.7、B【解析】

利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,然后利用函數圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數的性質、拋物線與x軸的交點、二次函數與一元二次方程,把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程是解題的關鍵.8、C【解析】

根據題意知小李所對應的坐標是(7,4).故選C.9、C【解析】分析:直接利用冪的乘方運算法則以及同底數冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.10、D【解析】

①根據作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數;③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規(guī)作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.11、C【解析】

眾數,中位數,方差等概念分析即可.【詳解】A、中獎是偶然現象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調查就行了,故是錯誤的;C、這組數據的眾數和中位數都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數據更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數,中位數,方差.12、A【解析】

根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥4【解析】試題分析:二次根式有意義的條件:二次根號下的數為非負數,二次根式才有意義.由題意得,.考點:二次根式有意義的條件點評:本題屬于基礎應用題,只需學生熟練掌握二次根式有意義的條件,即可完成.14、4或4.【解析】

①當AF<AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質得到MH=AE=2,根據勾股定理得到A′H=,根據勾股定理列方程即可得到結論;②當AF>AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據矩形的性質得到DH=AG,HG=AD=6,根據勾股定理即可得到結論.【詳解】①當AF<AD時,如圖1,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當AF>AD時,如圖2,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【點睛】本題考查了翻折變換-折疊問題,矩形的性質和判定,勾股定理,正確的作出輔助線是解題的關鍵.15、【解析】

因為大正方形邊長為,小正方形邊長為m,所以剩余的兩個直角梯形的上底為m,下底為,所以矩形的另一邊為梯形上、下底的和:+m=.16、甲.【解析】乙所得環(huán)數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.17、3【解析】試題分析:先進行二次根式的化簡,然后合并,可得原式=23+3=33.18、20°【解析】

根據切線的性質可知∠PAC=90°,由切線長定理得PA=PB,∠P=40°,求出∠PAB的度數,用∠PAC﹣∠PAB得到∠BAC的度數.【詳解】解:∵PA是⊙O的切線,AC是⊙O的直徑,∴∠PAC=90°.∵PA,PB是⊙O的切線,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案為20°.【點睛】本題考查了切線的性質,根據切線的性質和切線長定理進行計算求出角的度數.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣38x2+34x+3;D(1,278【解析】

(1)設拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;(2)畫圖,先根據點B和C的坐標確定直線BC的解析式,設P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設拋物線的解析式為y=a(x+2)(x﹣4),將點C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當x=1時,y=﹣34+3=9∴E(1,94∴DE=278-94=9設P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求一次函數和二次函數的解析式,利用方程思想列等式求點的坐標,難度適中.20、(1);(2)1.【解析】

(1)根據相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質的綜合應用,解題時注意:確定一個二次函數的最值,首先看自變量的取值范圍,當自變量取全體實數時,其最值為拋物線頂點坐標的縱坐標.21、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】

(1)根據全等三角形的性質求出DC,AD,BD之間的數量關系(2)過點B作BE⊥BD,交MN于點E.AD交BC于O,證明,得到,,根據為等腰直角三角形,得到,再根據,即可解出答案.(3)根據A、B、C、D四點共圓,得到當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.在DA上截取一點H,使得CD=DH=1,則易證,由即可得出答案.【詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點B作BE⊥BD,交MN于點E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點共圓,當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.此時DG⊥AB,DB=DA,在DA上截取一點H,使得CD=DH=1,則易證,∴.【點睛】本題主要考查全等三角形的性質,等腰直角三角形的性質以及圖形的應用,正確作輔助線和熟悉圖形特性是解題的關鍵.22、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由頻數直方圖知組距是50,分組數列中依次填寫100.5,150.5;0.5-50.5的頻數=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調查的樣本容量是100;(3)先求得消費在150元以上的學生的頻率,繼而可求得應對該校1000學生中約多少名學生提出該項建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數人.【點睛】本題考查了頻數分布表,樣本估計總體、樣本容量等知識.注意頻數分布表中總的頻率之和是1.23、(1)本次抽樣調查中的學生人數為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數為800人;(4).【解析】

(1)用選“閱讀”的人數除以它所占的百分比即可得到調查的總人數;(2)先計算出選“舞蹈”的人數,再計算出選“打球”的人數,然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數所占的百分比可估計該校課余興趣愛好為“打球”的學生人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出選到一男一女的結果數,然后根據概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調查中的學生人數為100人;(2)選”舞蹈”的人數為100×10%=10(人),選“打球”的人數為100﹣30﹣10﹣20=40(人),補全條形統(tǒng)計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數為800人;(4)畫樹狀圖為:共有12種等可能的結果數,其中選到一男一女的結果數為8,所以選到一男一女的概率=.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,列表法與樹狀圖法求概率,讀懂統(tǒng)計圖,從中找到有用的信息是解題的關鍵.本題中還用到了知識點為:概率=所求情況數與總情況數之比.24、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】

(1)根據統(tǒng)計表收集數據可求a,b,再根據中位數、眾數的定義可求m,n;(2)達標的學生人數=總人數×達標率,依此即可求解;(3)本題需先求出閱讀課外書的總時間,再除以平均閱讀一本課外書的時間即可得出結果.【詳解】解:(1)由統(tǒng)計表收集數據可知a=5,b=4,m=81,n=81;(2)(人).答:估計達標的學生有300人;(3)80×52÷260=16(本).答:估計該校學生每人一年(按52周計算)平均閱讀16本課外書.【點睛】本題主要考查統(tǒng)計表以及中位數,眾數,估計達標人數等,能夠從統(tǒng)計表中獲取有效信息是解題的關鍵.25、(1)統(tǒng)計表見解析;(2)補全圖形見解析;(3)總銷量越高,其個人購買量越大;(4).【解析】

(1)認真讀題,找到題目中的相關信息量,列表統(tǒng)計即可;(2)分別求出“混動乘用”和“純電動商用”的圓心角的度數,然后補扇形圖即可;(3)根據圖表信息寫出一個符合條件的信息即可;(4)利用樹狀圖確定求解概率.【詳解】(1)統(tǒng)計表如下:2017年新能源汽車各類型車型銷量情況(單位:萬輛)類型純電動混合動力總計新能源乘用車46.811.15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論