廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第1頁
廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第2頁
廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第3頁
廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第4頁
廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省揭陽普寧市2023-2024學(xué)年中考一模數(shù)學(xué)試題

注意事項(xiàng):

1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)

填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處”o

2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦

干凈后,再選涂其他答案。答案不能答在試題卷上。

3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先

劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。

4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回,

一、選擇題(共10小題,每小題3分,共30分)

1.一個(gè)幾何體的三視圖如圖所示,那么這個(gè)幾何體是()

V

/b£c?0-/

2.如圖,矩形ABCD的頂點(diǎn)A、C分別在直線a、b上,且2〃也Zl=60°,則N2的度數(shù)為()

A.30°B.45°C.60°D.75°

3.對于函數(shù)y=l,下列說法正確的是()

X

A.y是x的反比例函數(shù)B.它的圖象過原點(diǎn)

C.它的圖象不經(jīng)過第三象限D(zhuǎn).y隨x的增大而減小

4.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()

1

3

5

5.如圖是拋物線yi=ax2+bx+c(a/0)圖象的一部分,其頂點(diǎn)坐標(biāo)為A(-1,-3),與x軸的一個(gè)交點(diǎn)為B(-3,0),

直線y2=mx+n(m#0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①abc>0;②不等式ax?+(b-m)x+c-n<0的解集為

-3<x<-1;③拋物線與x軸的另一個(gè)交點(diǎn)是(3,0);④方程ax?+bx+c+3=()有兩個(gè)相等的實(shí)數(shù)根;其中正確的是()

8.小明早上從家騎自行車去上學(xué),先走平路到達(dá)點(diǎn)A,再走上坡路到達(dá)點(diǎn)3,最后走下坡路到達(dá)學(xué)校,小明騎自行車

所走的路程s(單位:千米)與他所用的時(shí)間f(單位:分鐘)的關(guān)系如圖所示,放學(xué)后,小明沿原路返回,且走平路、

上坡路、下坡路的速度分別保持和去上學(xué)時(shí)一致,下列說法:

①小明家距學(xué)校4千米;

②小明上學(xué)所用的時(shí)間為12分鐘;

③小明上坡的速度是0.5千米/分鐘;

④小明放學(xué)回家所用時(shí)間為15分鐘.

其中正確的個(gè)數(shù)是()

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

9.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于』AC的長為半徑作弧,兩弧相交于

2

M,N兩點(diǎn),作直線MN交AD于點(diǎn)E,則△CDE的周長是()

D.12

10.如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤

B.步行人數(shù)為30

C.乘車人數(shù)是騎車人數(shù)的2.5倍D.騎車人數(shù)占20%

二、填空題(本大題共6個(gè)小題,每小題3分,共18分)

11.如圖,長方形內(nèi)有兩個(gè)相鄰的正方形,面積分別為3和9,那么陰影部分的面積為

12.如圖,在梯形ABCD中,AD/7BC,ZA=90°,點(diǎn)E在邊AB上,AD=BE,AE=BC,由此可以知道△ADE旋轉(zhuǎn)

后能與△BEC重合,那么旋轉(zhuǎn)中心是.

4

13.在平面直角坐標(biāo)系xOy中,點(diǎn)A、B為反比例函數(shù)y=—(x>0)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均

x

4一

為1,將y=—(x>0)的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90。,A點(diǎn)的對應(yīng)點(diǎn)為A,,B點(diǎn)的對應(yīng)點(diǎn)為BL此時(shí)點(diǎn)B,的坐標(biāo)是

X

14.關(guān)于x的一元二次方程(k-1)x2+6x+k2-k=0的一個(gè)根是0,則k的值是.

15.關(guān)于x的方程ax=x+2(a*1)的解是.

2x+l>x

16.不等式組{,0的解集是▲.

4x<3x+2-------------

三、解答題(共8題,共72分)

17.(8分)如圖,已知AB為。。的直徑,AC是OO的弦,D是弧BC的中點(diǎn),過點(diǎn)D作。O的切線,分別交AC、

AB的延長線于點(diǎn)E和點(diǎn)F,連接CD、BD.

(1)求證:ZA=2ZBDF;

(2)若AC=3,AB=5,求CE的長.

18.(8分)如圖,一次函數(shù)y=2x-4的圖象與反比例函數(shù)y=&的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為1.

x

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),4ABP的面積為8,求P點(diǎn)坐標(biāo).

19.(8分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.

(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個(gè)、3個(gè)、4個(gè)全等三角形;

(2)如圖④,等邊△A3C邊長48=4,點(diǎn)。為它的外心,點(diǎn)M、N分別為邊A3、上的動(dòng)點(diǎn)(不與端點(diǎn)重合),

且NMON=120。,若四邊形8MON的面積為s,它的周長記為/,求工最小值;

s

(3)如圖⑤,等邊AHBC的邊長48=4,點(diǎn)尸為邊CA延長線上一點(diǎn),點(diǎn)。為邊A3延長線上一點(diǎn),點(diǎn)。為8c邊

中點(diǎn),且/如。=120。,若“L=x,請用含X的代數(shù)式表示ABO。的面積SAM2.

20.(8分)某學(xué)校為了解學(xué)生的課余活動(dòng)情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計(jì)圖(部分)

和扇形統(tǒng)計(jì)圖(部分)如圖:

(1)在這次研究中,一共調(diào)查了學(xué)生,并請補(bǔ)全折線統(tǒng)計(jì)圖;

(2)該校共有2200名學(xué)生,估計(jì)該校愛好閱讀和愛好體育的學(xué)生一共有多少人?

21.(8分)如圖,AB是。。的直徑,CD與。O相切于點(diǎn)C,與AB的延長線交于D.

(1)求證:AADCs/\CDB;

3

(2)若AC=2,AB=-CD,求。O半徑.

2

22.(10分)如圖,已知CD=CF,NA=NE=NDCF=90。,求證:AD+EF=AE

23.(12分)如圖已知AABC,點(diǎn)D是AB上一點(diǎn),連接CD,請用尺規(guī)在邊AC上求作點(diǎn)P,使得△PBC的面積與

△DBC的面積相等(保留作圖痕跡,不寫做法)

24.如圖,以△ABC的一邊AB為直徑作。O,。。與BC邊的交點(diǎn)D恰好為BC的中點(diǎn),過點(diǎn)D作。O的切線交

AC邊于點(diǎn)E.

(1)求證:DE±AC;

3OF

(2)連結(jié)OC交DE于點(diǎn)F,若sinNABC=:,求力的值.

4FC

參考答案

一、選擇題(共10小題,每小題3分,共30分)

1、C

【解析】

由主視圖和左視圖可得此幾何體為柱體,根據(jù)俯視圖為三角形可得此幾何體為三棱柱.故選C.

2、C

【解析】

試題分析:過點(diǎn)D作DE〃a,;四邊形ABCD是矩形,,NBAD=NADC=90。,N3=90。-Zl=90°-60°=30°,Va//b,

;.DE〃a〃b,.\N4=N3=30°,Z2=Z5,AZ2=90°-30°=60°.故選C.

考點(diǎn):1矩形;2平行線的性質(zhì).

3、C

【解析】

直接利用反比例函數(shù)的性質(zhì)結(jié)合圖象分布得出答案.

【詳解】

對于函數(shù)y=±,y是x2的反比例函數(shù),故選項(xiàng)A錯(cuò)誤;

x

它的圖象不經(jīng)過原點(diǎn),故選項(xiàng)B錯(cuò)誤;

它的圖象分布在第一、二象限,不經(jīng)過第三象限,故選項(xiàng)C正確;

第一象限,yl?x的增大而減小,第二象限,y隨x的增大而增大,

故選C.

【點(diǎn)睛】

此題主要考查了反比例函數(shù)的性質(zhì),正確得出函數(shù)圖象分布是解題關(guān)鍵.

4、D

【解析】

根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.

【詳解】

解:作于E,

A1p

B5EC

則四邊形AEC。為矩形,

:.EC=AD=1,AE=CD=3,

:.BE=4,

由勾股定理得,AB=y/AE2+BE2=5'

,四邊形A5c。的四條邊之比為1:3:5:5,

D選項(xiàng)中,四條邊之比為1:3:5:5,且對應(yīng)角相等,

故選D.

【點(diǎn)睛】

本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.

5、D

【解析】

①錯(cuò)誤.由題意a>Lb>l,c<l,abc<l;

②正確.因?yàn)閥i=ax2+bx+c(a^l)圖象與直線y2=mx+n(m^l)交于A,B兩點(diǎn),當(dāng)ax2+bx+c<mx+n時(shí),-3<xV-l;

即不等式ax?+(b-m)x+c-n<l的解集為-3VxV-l;故②正確;

③錯(cuò)誤.拋物線與x軸的另一個(gè)交點(diǎn)是(1,1);

④正確.拋物線yi=ax?+bx+c(a#l)圖象與直線y=-3只有一個(gè)交點(diǎn),方程ax2+bx+c+3=l有兩個(gè)相等的實(shí)數(shù)根,故④

正確.

【詳解】

解:?.?拋物線開口向上,,a>l,

???拋物線交y軸于負(fù)半軸,...cVl,

b

???對稱軸在y軸左邊,?丁丁<1,

2a

/.abc<l,故①錯(cuò)誤.

Vyi=ax2+bx+c(a^l)圖象與直線y2=mx+n(m#l)交于A,B兩點(diǎn),

當(dāng)ax2+bx+c<mx+n時(shí),-3<x<-l;

即不等式ax?+(b-m)x+c?nVl的解集為?3VxV-l;故②正確,

拋物線與X軸的另一個(gè)交點(diǎn)是(1,1),故③錯(cuò)誤,

?.?拋物線yi=ax2+bx+c(a#l)圖象與直線y=-3只有一個(gè)交點(diǎn),

方程ax2+bx+c+3=l有兩個(gè)相等的實(shí)數(shù)根,故④正確.

故選:D.

【點(diǎn)睛】

本題考查二次函數(shù)的性質(zhì)、二次函數(shù)與不等式,二次函數(shù)與一元二次方程等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解

決問題,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題.

6、C

【解析】

解:球是主視圖是圓,圓是中心對稱圖形,故選C.

7、D

【解析】

根據(jù)把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對稱圖形,

這個(gè)點(diǎn)叫做對稱中心進(jìn)行分析即可.

【詳解】

解:A、不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;

B、不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;

C、不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;

D、是中心對稱圖形,故此選項(xiàng)正確;

故選:D.

【點(diǎn)睛】

此題主要考查了中心對稱圖形,關(guān)鍵是掌握中心對稱圖形的定義.

8、C

【解析】

從開始到A是平路,是1千米,用了3分鐘,則從學(xué)校到家門口走平路仍用3分鐘,根據(jù)圖象求得上坡(43段)、下

坡(5到學(xué)校段)的路程與速度,利用路程除以速度求得每段所用的時(shí)間,相加即可求解.

【詳解】

解:①小明家距學(xué)校4千米,正確;

②小明上學(xué)所用的時(shí)間為12分鐘,正確;

③小明上坡的速度是U=°-2千米/分鐘,錯(cuò)誤;

8-3

④小明放學(xué)回家所用時(shí)間為3+2+10=15分鐘,正確;

故選:c.

【點(diǎn)睛】

本題考查利用函數(shù)的圖象解決實(shí)際問題,正確理解函數(shù)圖象橫縱坐標(biāo)表示的意義,理解問題的過程,就能夠通過圖象

得到函數(shù)問題的相應(yīng)解決.需注意計(jì)算單位的統(tǒng)一.

9、B

【解析】

四邊形ABCD是平行四邊形,

/.AD=BC=4,CD=AB=6,

???由作法可知,直線MN是線段AC的垂直平分線,

/.AE=CE,

:.AE+DE=CE+DE=AD,

/.△CDE的周長=CE+DE+CD=AD+CD=4+6=L

故選B.

10、B

【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人

數(shù),以及騎車人數(shù)所占的比例.

【詳解】

A、總?cè)藬?shù)是:25+50%=50(人),故A正確;

B、步行的人數(shù)是:50x30%=15(人),故B錯(cuò)誤;

C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%+20%=2.5,故C正確;

D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.

由于該題選擇錯(cuò)誤的,

故選B.

【點(diǎn)睛】

本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研

究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.

二、填空題(本大題共6個(gè)小題,每小題3分,共18分)

11、1行1

【解析】

設(shè)兩個(gè)正方形的邊長是X、y(x<y),得出方程7=1,[2=9,求出“=6,y=l,代入陰影部分的面積是(y-x)x

求出即可.

【詳解】

設(shè)兩個(gè)正方形的邊長是*、y(x<j),則/=1,y2=9,x=Q,y=l,則陰影部分的面積是(j-x)x=

(l-V3)xV3=3A/3-1.

故答案為lg-L

【點(diǎn)睛】

本題考查了二次根式的應(yīng)用,主要考查學(xué)生的計(jì)算能力.

12、CD的中點(diǎn)

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),其中對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,于是得到結(jié)論.

【詳解】

VAADE旋轉(zhuǎn)后能與△BEC重合,

/.△ADE^ABEC,

NAED=NBCE,/B=NA=90。,ZADE=ZBEC,DE=EC,

.\ZAED+ZBEC=90°,

.?.ZDEC=90°,

/.△DEC是等腰直角三角形,

...D與E,E與C是對應(yīng)頂點(diǎn),

;CD的中點(diǎn)到D,E,C三點(diǎn)的距離相等,

二旋轉(zhuǎn)中心是CD的中點(diǎn),

故答案為:CD的中點(diǎn).

【點(diǎn)睛】

本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),關(guān)鍵是明確旋轉(zhuǎn)中心的概念.

13、(1,-4)

【解析】

利用旋轉(zhuǎn)的性質(zhì)即可解決問題.

【詳解】

如圖,

由題意A(1,4),B(4,1),A根據(jù)旋轉(zhuǎn)的性質(zhì)可知,(4,-1),B'(1,-4);

所以,B'(1,-4);

故答案為(1,-4).

【點(diǎn)睛】

本題考查反比例函數(shù)的旋轉(zhuǎn)變換,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.

14、2.

【解析】

試題解析:由于關(guān)于X的一元二次方程(左—l)/+6x+Q—左=0的一個(gè)根是2,把x=2代入方程,得左2—左=0,

解得,k2=2,左2=2

當(dāng)仁2時(shí),由于二次項(xiàng)系數(shù)上-2=2,方程仕—l)Y+6x+公—左=。不是關(guān)于x的二次方程,故到2.

所以改的值是2.故答案為2.

【解析】

分析:依據(jù)等式的基本性質(zhì)依次移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1即可得出答案.

2

詳解:移項(xiàng),得:ax-x=l,合并同類項(xiàng),得:(?-1)x=l.?.?存1,工。T#0,方程兩邊都除以a-1,得:-----故

a—1

2

答案為尸一

CL—1

點(diǎn)睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質(zhì)及解一元一次方程的基本步驟是解題的關(guān)鍵.

16、-1<X<1

【解析】

解一元一次不等式組.

【分析】解一元一次不等式組,先求出不等式組中每一個(gè)不等式的解集,再利用口訣求出這些解集的公共部分:同大

取大,同小取小,大小小大中間找,大大小小解不了(無解).因此,

解第一個(gè)不等式得,X>-1,

解第二個(gè)不等式得,XW1,

二不等式組的解集是-IVxWL

三、解答題(共8題,共72分)

17、(1)見解析;(2)1

【解析】

(1)連接AD,如圖,利用圓周角定理得NADB=90。,利用切線的性質(zhì)得OD_LDF,則根據(jù)等角的余角相等得到

ZBDF=ZODA,所以NOAD=NBDF,然后證明NCOD=NOAD得到NCAB=2NBDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到ODLBC,則CH=BH,于是可判斷OH為△ABC的中位線,

所以O(shè)H=L5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=L

【詳解】

(1)證明:連接AD,如圖,

TAB為。。的直徑,

.,.ZADB=90°,

VEF為切線,

?\OD±DF,

,."ZBDF+ZODB=90o,ZODA+ZODB=90°,

/.ZBDF=ZODA,

VOA=OD,

AZOAD=ZODA,

/.ZOAD=ZBDF,

;D是弧BC的中點(diǎn),

.\ZCOD=ZOAD,

.,.ZCAB=2ZBDF;

(2)解:連接BC交OD于H,如圖,

;D是弧BC的中點(diǎn),

/.OD±BC,

/.CH=BH,

,OH為AABC的中位線,

:.OH=-AC=-x3=1.5,

22

/.HD=2.5-1.5=1,

;AB為。O的直徑,

/.ZACB=90°,

;?四邊形DHCE為矩形,

/.CE=DH=1.

【點(diǎn)睛】

本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出

垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理.

18、(1)y=-;(2)(4,0)或(0,0)

x

【解析】

⑴把X=1代入一次函數(shù)解析式求得A的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)解析式;

⑵解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標(biāo),后利用△ABP的面積為8,可求P點(diǎn)坐標(biāo).

【詳解】

解:(1)把x=l代入y=2x-4,可得

y=2xl-4=2,

,A(1,2),

k

把(1,2)代入y=—,可得k=lx2=6,

x

.??反比例函數(shù)的解析式為y=-;

X

(2)根據(jù)題意可得:2x-4=2

X

解得X1=LX2=-1,

把X2=-1,代入y=2x-4,可得

y=-6,

???點(diǎn)B的坐標(biāo)為(-1,-6).

設(shè)直線AB與x軸交于點(diǎn)C,

y=2x-4中,令y=0,則x=2,即C(2,0),

設(shè)P點(diǎn)坐標(biāo)為(X,0),則

yX|x-2|X(2+6)=8,

解得x=4或0,

.?.點(diǎn)P的坐標(biāo)為(4,0)或(0,0).

>【點(diǎn)睛】本題主要考查用待定系數(shù)法求

一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點(diǎn)的問題,聯(lián)立兩函數(shù)可求解。

19、(1)詳見解析;(2)2+2g;⑶S^BDQ—x+y/3.

2

【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.

(2)如圖④中,作。于E,OF±BC^F,連接。5.證明△OEMg△。尸N(ASA),推出EM=FN,ON=

OM,SAEOM=SANOE,推出四邊形BEOF=定值,證明RtAOBE^RtA推出BM+BN=BE+EM+BF

-FN=2BE=定值,推出欲求,最小值,只要求出/的最小值,因?yàn)?=3M+3N+0N+0M=定值+ON+OM所以欲求,

SS

最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時(shí),OM定值最小,

由此即可解決問題.

(3)如圖⑤中,連接AO,作。于E,DFA,ACF.證明△尸。尸絲△00E(4SA),即可解決問題.

【詳解】

解:(1)如圖1,作一邊上的中線可分割成2個(gè)全等三角形,

如圖2,連接外心和各頂點(diǎn)的線段可分割成3個(gè)全等三角形,

如圖3,連接各邊的中點(diǎn)可分割成4個(gè)全等三角形,

圖①圖②圖③

(2)如圖④中,作。及LAB于E,OF_L,BC于F,連接???/p>

,/AABC是等邊三角形,O是外心,

平分NA5C,ZABC^60°':OE±AB,0F±BC,

:.OE=OF,

VZOEB=ZOFB=90°,

ZEOF+ZEBF=1SQ°,

NEOF=NNOM=120°,

:.NEOM=NFON,

:./\OEM^/\OFN(ASA),

:.EM=FN,ON=OM,SAEOM=S^NOF,

?"?S四邊形BMON=S四邊形BEOF=定值,

?:OB=OB,OE=OF,ZOEB=ZOFB=90°,

,*.RtAOBE^Rt^OBF(HL),

:.BE=BF,

:.BM+BN=BE+EM+BF-尸N=25E=定值,

欲求1最小值,只要求出/的最小值,

S

,:1=BM+BN+ON+OM=定值+ON+OM,

欲求」最小值,只要求出ON+OM的最小值,

S

-:OM=ON9根據(jù)垂線段最短可知,當(dāng)0M與?!曛睾蠒r(shí),OM定值最小,

2g1±用uI1c2626,c,262石“4百

此時(shí)一定值最小,S=—X2x—2—=—2—,Z=2+2+—^―+----=4+—^—,

s233333

-的最小值=——A=2+26.

S2J3

(3)如圖⑤中,連接AO,作。E_LA3于E,DF±ACF.

?.?△4BC是等邊三角形,BD=DC,

:.AD平分N5AC,

':DELAB,DFLAC,

:.DE=DF,

':ZDEA=ZDEQ=NAFD=90。,

:.NEAF+NE。歹=180°,

VZEAF=60°,

:.NEDF=ZPDg=120°,

:.ZPDF=ZQDE,

:./\PDF^^QDE(ASA),

:.PF=EQ,

在RtAOCF中,?:DC=2,ZC=60°,ZDFC=90°,

:.CF=^CD=1,DF=拒,

同法可得:BE=1,DE=DF=框,

VAF=AC-CF=4-1=3,PA=x,

^.PF=EQ=3+x,

:.BQ=EQ-BE=2+x,

SABDQ=y?BQ*DE=yx(2+x)x=_J_x+73.

【點(diǎn)睛】

本題主要考查多邊形的綜合題,主要涉及的知識點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等

量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識點(diǎn)是解此類綜合題的關(guān)鍵。

20、(1)200名;折線圖見解析;(2)1210人.

【解析】

(1)由“其他”的人數(shù)和所占百分?jǐn)?shù),求出全部調(diào)查人數(shù);先由“體育”所占百分?jǐn)?shù)和全部調(diào)查人數(shù)求出體育的人數(shù),進(jìn)

一步求出閱讀的人數(shù),補(bǔ)全折線統(tǒng)計(jì)圖;

(2)利用樣本估計(jì)總體的方法計(jì)算即可解答.

【詳解】

(1)調(diào)查學(xué)生總?cè)藬?shù)為40+20%=200體育人數(shù)為:200x30%=60(人),閱讀人數(shù)為:200-(60+30+20+40)

=200-150=50(人).

答:估計(jì)該校學(xué)生中愛好閱讀和愛好體育的人數(shù)大約是1210人.

【點(diǎn)睛】

本題考查了統(tǒng)計(jì)知識的應(yīng)用,試題以圖表為載體,要求學(xué)生能從中提取信息來解題,與實(shí)際生活息息相關(guān),符合新課

標(biāo)的理念.

21、(1)見解析;(2)6

2

【解析】

分析:(1)首先連接CO,根據(jù)CD與。O相切于點(diǎn)C,可得:NOCD=90。;然后根據(jù)AB是圓O的直徑,可得:NACB=90。,

據(jù)此判斷出NCAD=NBCD,即可推得4ADC^ACDB.

(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)4ADC<^ACDB,可得:ACCB=CDBD,

據(jù)此求出CB的值是多少,即可求出。O半徑是多少.

詳解:

(1)證明:如圖,連接CO,

“4,

;CD與。O相切于點(diǎn)C,

?,.ZOCD=90°,

;AB是圓O的直徑,

.,.ZACB=90°,

.?.NACOh/BCD,

VZACO=ZCAD,

.,.ZCAD=ZBCD,

在^ADC^DACDB中,

ZCAD=/BCD

ZADC=ZCDB

/.△ADC^ACDB.

(2)解:設(shè)CD為x,

33

貝!|AB=-x,OC=OB=-x,

24

VZOCD=90°,

???OD=7(9C2+CD2=3獷+£=:X,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論