




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
《高等數(shù)學(xué)》課件(第十章第一節(jié))多重積分
第十章(Multipleintegral)《高等數(shù)學(xué)》課件(第十章第一節(jié))在本章中,我們將一元函數(shù)的定積分推廣到多元函數(shù)的重積分.
內(nèi)容包括:
10.1二重積分的概念
10.2二重積分的計(jì)算
10.3三重積分《高等數(shù)學(xué)》課件(第十章第一節(jié))10.1二重積分的概念(theconceptionofdoubleintegral)
曲頂柱體
:以平面上的有界閉區(qū)域D為底,連續(xù)函數(shù)z
f
(x,y)((x,y)
D,f(x,
y)0)形成的曲面S為頂,區(qū)域D的邊界曲線(xiàn)C作準(zhǔn)線(xiàn),母線(xiàn)平行于z軸的柱面為側(cè)面形成的立體.
10.1.1二重積分的定義
1曲頂柱體的體積z
f(x,y)DzyOCx《高等數(shù)學(xué)》課件(第十章第一節(jié))求曲頂柱體的體積V
.用曲線(xiàn)網(wǎng)將區(qū)域D劃分為n個(gè)小區(qū)域:
1,
2,,
n,
i
也同時(shí)表示相應(yīng)區(qū)域的面積.記
max{
i
的直徑:i
1,2,,n}.
yxzOS:z
f(x,y)f(
i,
i)
iD(
i,
i)《高等數(shù)學(xué)》課件(第十章第一節(jié))在每一個(gè)小區(qū)域
i
中任取一點(diǎn)Pi
(
i,
i),以fi
(
i,
i)
作為
i上的小曲頂柱體高度的近似值.則
i
上的小曲頂柱體體積的近似值為于是,曲頂柱體體積的精確值為以各小區(qū)域的邊界為準(zhǔn)線(xiàn),作母線(xiàn)平行z軸的柱面把曲頂柱體分為n個(gè)小曲頂柱體.
從而整個(gè)曲頂柱體體積V的近似值為yxzOS:z
f(x,y)f(
i,
i)
iD(
i,
i)《高等數(shù)學(xué)》課件(第十章第一節(jié))
2二重積分的定義
定義10-1
設(shè)二元函數(shù)z
f(x,y)為定義在有界閉區(qū)域D上的有界函數(shù),用一組曲線(xiàn)網(wǎng)將區(qū)域D任意劃分為n個(gè)小區(qū)域:
1,
2,,
n,記
max{
i
的直徑:i
1,2,,n}.
任取
(
i,
i)
i,作和
《高等數(shù)學(xué)》課件(第十章第一節(jié))其中f(x,y)為被積函數(shù),f(x,y)d
為積分表達(dá)式,d
為面積元素(或面積微元),x,y是積分變量,D是積分區(qū)域.
令
0,若In
的極限存在,且極限值與對(duì)區(qū)域D的劃分法以及點(diǎn)(
i,
i)的選取無(wú)關(guān),則稱(chēng)f(x,y)在區(qū)域D上(Riemman)可積,并稱(chēng)極限值I為f(x,y)在區(qū)域D上的二重積分,記為即《高等數(shù)學(xué)》課件(第十章第一節(jié))幾何上,二重積分表示曲頂柱體的體積的代數(shù)和.
當(dāng)f(x,y)1時(shí),表示區(qū)域D
的面積.在直角坐標(biāo)系下,用平行于坐標(biāo)軸的直線(xiàn)網(wǎng)劃分D,則面積微元d
dx
dy,
其中dx
dy
為直角坐標(biāo)系下的面積元素.
所以《高等數(shù)學(xué)》課件(第十章第一節(jié))
3平面薄片的質(zhì)量取(x,y)D,并取(x,y)處的面積微元d
,則質(zhì)量微元dM
(x,y)d
,于是平面薄片的質(zhì)量為
設(shè)平面薄片占有xOy
平面上的有界閉區(qū)域D,在點(diǎn)(x,y)
D處的面密度為
(x,y),
(x,y)>0,且在D上連續(xù),求此平面薄片的質(zhì)量.《高等數(shù)學(xué)》課件(第十章第一節(jié))
4二重積分的存在定理
定理10-1
若二元函數(shù)f(x,y)在平面有界閉區(qū)域D上連續(xù),則f(x,y)在D上可積.
10.1.2二重積分的性質(zhì)由于二重積分與一重積分一樣都是黎曼(Riemman)積分,因此它們有類(lèi)似的性質(zhì).這些性質(zhì)容易根據(jù)重積分的定義來(lái)證明.《高等數(shù)學(xué)》課件(第十章第一節(jié))
2.(區(qū)域可加性)若f(x,y)在有界閉區(qū)域D1
和D2
上均可積,其中D1
和D2除邊界外沒(méi)有公共部分,則f(x,y)在D
1
D
2上也可積,且有
1.(線(xiàn)性性)若f1(x,y),f2(x,y)在有界閉區(qū)域D上可積,則對(duì)任何常數(shù)k1,k2,有《高等數(shù)學(xué)》課件(第十章第一節(jié))
3.(單調(diào)性)若f(x,y)和g(x,y)在有界閉區(qū)域D上均可積,且在D上恒有f(x,y)
g(x,y),則
推論1
若在區(qū)域D上f(x,y)0,則
推論2因?yàn)楣省陡叩葦?shù)學(xué)》課件(第十章第一節(jié))
4.(積分中值定理)設(shè)f(x,y)在有界閉區(qū)域D上連續(xù),則存在點(diǎn)(
,
)D,使得
推論3
若在區(qū)域D上,m
f(x,y)M,則其中A(D)是D的面積.
f(x,y)在區(qū)域D上的平均值定義為則在在上取得最大值和最小值,使得因函數(shù)
在
上連續(xù),證故由連續(xù)函數(shù)的介值定理知,存在使得從而《高等數(shù)學(xué)》課件(第十章第一節(jié))
例1
估計(jì)二重積分
解在D
上ln2
ln(1x2
y2)ln3,的值,其中D
{(x,y)|1x2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CEMIA 017-2018多模光纖預(yù)制棒用石英襯管和套管
- T/CECS 10214-2022鋼面鎂質(zhì)復(fù)合風(fēng)管
- T/CECS 10081-2020餐廚廢棄物智能處理設(shè)備
- T/CCS 032-2023礦井智能化通風(fēng)系統(tǒng)建設(shè)技術(shù)規(guī)范
- T/CCMA 0188-2024純電動(dòng)裝載機(jī)動(dòng)態(tài)噪聲試驗(yàn)方法
- T/CCMA 0074-2019挖掘機(jī)載荷譜試驗(yàn)方法
- T/CAS 512-2021個(gè)人理財(cái)在線(xiàn)培訓(xùn)服務(wù)要求
- T/CAQI 10-2021新風(fēng)凈化機(jī)
- 調(diào)研素材面試題及答案
- 帶頭致富面試題及答案
- 2025年標(biāo)準(zhǔn)離婚協(xié)議書(shū)模板(無(wú)財(cái)產(chǎn)爭(zhēng)議)
- 醫(yī)療廢物管理職責(zé)的監(jiān)督機(jī)制
- 2025屆高考語(yǔ)文作文素材-哪吒之魔童鬧海
- 【高考真題】2022年高考物理真題試卷-福建卷(含答案)
- GB/T 23723.5-2025起重機(jī)安全使用第5部分:橋式和門(mén)式起重機(jī)
- 兒童口腔護(hù)理疑難病例討論
- GB/T 45198-2024老舊汽車(chē)估值評(píng)價(jià)規(guī)范
- 重慶市2025年中考物理二模試卷含答案
- 2025年華東師大版八年級(jí)物理下冊(cè)階段測(cè)試試卷
- 【報(bào)告案例】河南中孚高精鋁材有限公司生命周期評(píng)估報(bào)告
- 2024年銀行業(yè)全渠道客戶(hù)旅程分析與精細(xì)化線(xiàn)上運(yùn)營(yíng)白皮書(shū)-火山引擎
評(píng)論
0/150
提交評(píng)論