版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆北京海淀北方交大附中高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,,,則()A. B. C. D.2.如圖,在下列四個正方體中,,,,,,,為所在棱的中點,則在這四個正方體中,陰影平面與所在平面平行的是()A. B.C. D.3.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其意思是“有一個人走378里,第一天健步行走,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地.”請問第三天走了()A.60里 B.48里 C.36里 D.24里4.閱讀如圖所示的程序,若運該程序輸出的值為100,則的面的條件應該是()A. B. C. D.5.在四邊形ABCD中,若,則四邊形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四邊形6.古代數(shù)學著作《九章算術》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30,該女子所需的天數(shù)至少為()A.7 B.8 C.9 D.107.已知的內(nèi)角的對邊分別為,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形8.在平面直角坐標系xoy中,橫、縱坐標均為整數(shù)的點叫做格點,若函數(shù)的圖象恰好經(jīng)過個格點,則稱函數(shù)為階格點函數(shù).下列函數(shù)中為一階格點函數(shù)的是()A. B. C. D.9.《九章算術》卷第六《均輸》中,提到如下問題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.問中間二節(jié)欲均容,各多少?”其大致意思是說,若九節(jié)竹每節(jié)的容量依次成等差數(shù)列,下三節(jié)容量四升,上四節(jié)容量三升,則中間兩節(jié)的容量各是()A.升、升 B.升、升C.升、升 D.升、升10.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與原正方體體積的比值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前n項和,則___________.12.如圖,在正方體中,、分別是、的中點,則異面直線與所成角的大小是______.13.已知等差數(shù)列中,首項,公差,前項和,則使有最小值的_________.14.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.15.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為________.16.如圖,半徑為的扇形的圓心角為,點在上,且,若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.18.已知向量,的夾角為120°,且||=2,||=3,設32,2.(Ⅰ)若⊥,求實數(shù)k的值;(Ⅱ)當k=0時,求與的夾角θ的大小.19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面積S.20.在中,分別是角的對邊,.(1)求的值;(2)若的面積,,求的值.21.在直三棱柱中,,,,分別是,的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意得,因為,所以,所以,故,故選C.2、A【解析】
根據(jù)線面平行判定定理以及作截面逐個分析判斷選擇.【詳解】A中,因為,所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點),如圖:C中,作截面可得平面平面(H為C1D1中點),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.3、B【解析】
根據(jù)題意得出等比數(shù)列的項數(shù)、公比和前項和,由此列方程,解方程求得首項,進而求得的值.【詳解】依題意步行路程是等比數(shù)列,且,,,故,解得,故里.故選B.【點睛】本小題主要考查中國古典數(shù)學文化,考查等比數(shù)列前項和的基本量計算,屬于基礎題.4、D【解析】
根據(jù)輸出值和代碼,可得輸出的最高項的值,進而結(jié)合當型循環(huán)結(jié)構(gòu)的特征得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)體,可知因為輸出的值為100,所以由等差數(shù)列求和公式可知求和到19停止,結(jié)合當型循環(huán)結(jié)構(gòu)特征,可知滿足條件時返回執(zhí)行循環(huán)體,因而判斷框內(nèi)的內(nèi)容為,故選:D.【點睛】本題考查了當型循環(huán)結(jié)構(gòu)的代碼應用,根據(jù)輸出值選擇條件,屬于基礎題.5、D【解析】試題分析:因為,根據(jù)向量的三角形法則,有,則可知,故四邊形ABCD為平行四邊形.考點:向量的三角形法則與向量的平行四邊形法則.6、B【解析】試題分析:設該女子第一天織布尺,則,解得,所以前天織布的尺數(shù)為,由,得,解得的最小值為,故選B.考點:等比數(shù)列的應用.7、A【解析】中,,所以.由正弦定理得:.所以.所以,即因為為的內(nèi)角,所以所以為等腰三角形.故選A.8、A【解析】
根據(jù)題意得,我們逐個分析四個選項中函數(shù)的格點個數(shù),即可得到答案.【詳解】根據(jù)題意得:函數(shù)y=sinx圖象上只有(0,0)點橫、縱坐標均為整數(shù),故A為一階格點函數(shù);函數(shù)沒有橫、縱坐標均為整數(shù),故B為零階格點函數(shù);函數(shù)y=lgx的圖象有(1,0),(10,1),(100,2),…無數(shù)個點橫、縱坐標均為整數(shù),故C為無窮階格點函數(shù);函數(shù)y=x2的圖象有…(﹣1,0),(0,0),(1,1),…無數(shù)個點橫、縱坐標均為整數(shù),故D為無窮階格點函數(shù).故選A.【點睛】本題考查的知識點是函數(shù)的圖象與圖象變化,其中分析出函數(shù)的格點個數(shù)是解答本題的關鍵,屬于中檔題.9、D【解析】
由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,an,公差為d,利用等差數(shù)列的前n項和公式和通項公式列出方程組,求出首項和公差,由此能求出中間一節(jié)的容量.【詳解】由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,a9,公差為d,即=4,=3,∴=4,=3,解得,,∴中間兩節(jié)的容量,,故選:D.【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列的通項公式列出方程組,解出首項與公差即可,考查計算能力,屬于基礎題.10、C【解析】
根據(jù)三視圖還原出幾何體,得到是在正方體中,截去四面體,利用體積公式,求出其體積,然后得到答案.【詳解】根據(jù)三視圖還原出幾何體,如圖所述,得到是在正方體中,截去四面體設正方體的棱長為,則,故剩余幾何體的體積為,所以截去部分的體積與剩余部分的體積的比值為.故選:C.【點睛】本題考查了幾何體的三視圖求幾何體的體積;關鍵是正確還有幾何體,利用體積公式解答,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、17【解析】
根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數(shù)列前n項和通項公式的應用,遞推法求數(shù)列的項,屬于基礎題.12、【解析】
將所求兩條異面直線平移到一起,解三角形求得異面直線所成的角.【詳解】連接,根據(jù)三角形中位線得到,所以是異面直線與所成角.在三角形中,,所以三角形是等邊三角形,故.故填:.【點睛】本小題主要考查異面直線所成的角的求法,考查空間想象能力,屬于基礎題.13、或【解析】
求出,然后利用,求出的取值范圍,即可得出使得有最小值的的值.【詳解】,令,解得.因此,當或時,取得最小值.故答案為:或.【點睛】本題考查等差數(shù)列前項和的最小值求解,可以利用二次函數(shù)性質(zhì)求前項和的最小值,也可以轉(zhuǎn)化為數(shù)列所有非正數(shù)項相加,考查計算能力,屬于中等題.14、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關鍵在于根據(jù)題意作出相應圖形,利用平面幾何知識求解相應線段長,代入圓錐體積公式即可.15、【解析】
圓柱的側(cè)面打開是一個矩形,長為底面的周長,寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因為圓柱的底面圓的半徑為2,所以圓柱的底面圓的周長為,則該圓柱的側(cè)面積為.【點睛】此題考察圓柱側(cè)面積公式,屬于基礎題目.16、【解析】根據(jù)題意,可得OA⊥OC,以O為坐標為坐標原點,OC,OA所在直線分別為x軸、y軸建立平面直角坐標系,如圖所示:則有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,則:,解得.∴.點睛:(1)應用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用條件求數(shù)列的首項與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項和公式求和【詳解】解:(1)設等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項和,則數(shù)列的前項和.【點睛】本題考查等比數(shù)列的通項,分組求和法,考查計算能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,結(jié)合向量的數(shù)量積的運算公式,得到關于的方程,即可求解;(Ⅱ)當時,利用向量的數(shù)量積的運算公式,以及向量的夾角公式,即可求解.【詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以與的夾角θ的大小為.【點睛】本題主要考查了向量的數(shù)量積的運算,以及向量的夾角公式的應用,其中解答中熟記向量的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)(1)【解析】試題分析:(1)由已知利用正弦定理,兩角和的正弦公式、誘導公式化簡可得,結(jié)合,可求,進而可求的值;(1)由已知及余弦定理,平方和公式可求的值,進而利用三角形面積公式即可計算得解.試題解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,
∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:
(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.20、(1)4;(2)【解析】
(1)利用兩角差的正弦和正弦定理將條件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面積公式求得,結(jié)合余弦定理可得,解方程即可得答案.【詳解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【點睛】本題考查兩角差的正弦、正弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游宣傳冊印刷服務合同3篇
- 新媒體賬號代運營協(xié)議范本樣文3篇
- 排水招投標技巧3篇
- 新版制作合同樣本3篇
- 農(nóng)村紀念館建設施工合同
- 船舶維修短期施工合同
- 美食APP廚師長招聘合同樣本
- 會議室裝飾改造工程分包合同
- 攝影棚租賃協(xié)議范文
- 教育設施臨時設施施工合同
- 2024年7月國家開放大學本科《中國法律史》期末紙質(zhì)考試試題及答案
- 八年級生物上冊知識點總結(jié)(填空版+答案)
- 分布式光伏建設投資人投標方案(技術方案)
- 果樹嫁接合同協(xié)議書
- 2024年四川省自然資源置業(yè)集團招聘筆試沖刺題(帶答案解析)
- 幼兒園小班語言課件:《冬天到了》
- 醫(yī)院內(nèi)急診重癥快速反應小組建設專家共識1
- 2023-2024學年度九上圓與無刻度直尺作圖專題研究(劉培松)
- 2023年度四川公需科目:數(shù)字經(jīng)濟與驅(qū)動發(fā)展
- 汽車制造業(yè)的柔性生產(chǎn)與敏捷制造
- 五年級上冊小數(shù)乘除練習300道及答案
評論
0/150
提交評論