大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題含解析_第1頁
大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題含解析_第2頁
大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題含解析_第3頁
大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題含解析_第4頁
大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

大慶市重點中學2025屆高一下數(shù)學期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓2.設,,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于23.已知函數(shù)(,)的圖象的相鄰兩條對稱軸之間的距離為,將函數(shù)的圖象向右平移()個單位長度后得到函數(shù)的圖象,若,的圖象都經(jīng)過點,則的一個可能值是()A. B. C. D.4.已知,是平面,m,n是直線,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則5.在中,角的對邊分別為,,且邊,則面積的最大值為()A. B. C. D.6.設甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20分鐘,在乙地休息10分鐘后,他又以勻速從乙地返回到甲地用了30分鐘,則小王從出發(fā)到返回原地所經(jīng)過的路程y和其所用的時間x的函數(shù)圖象為()A. B.C. D.7.已知,函數(shù)的最小值是()A.4 B.5 C.8 D.68.如圖,設,是平面內(nèi)相交的兩條數(shù)軸,,分別是與軸,軸正方向同向的單位向量,且,若向量,則把有序數(shù)對叫做向量在坐標系中的坐標.假設在坐標系中的坐標為,則()A. B. C. D.9.已知甲,乙,丙三人去參加某公司面試,他們被該公司錄取的概率分別是,,,且三人錄取結(jié)果相互之間沒有影響,則他們?nèi)酥兄辽儆幸蝗吮讳浫〉母怕蕿椋ǎ〢. B. C. D.10.在△ABC中角ABC的對邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知3a=2,則32a=____,log318﹣a=_____12.一圓柱的側(cè)面展開圖是長、寬分別為3、4的矩形,則此圓柱的側(cè)面積是________.13.若函數(shù)的圖象過點,則___________.14.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.15.如圖所示,隔河可以看到對岸兩目標,但不能到達,現(xiàn)在岸邊取相距的兩點,測得(在同一平面內(nèi)),則兩目標間的距離為_________.16.已知角的終邊經(jīng)過點,則的值為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在直三棱柱中,,,,分別是,的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.18.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.19.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)20.已知(1)求的定義域;(2)判斷的奇偶性并予以證;;(3)求使>0成立的x的取值范圍.21.己知數(shù)列的前項和,求數(shù)列的通項.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】原方程即即或故原方程表示兩個半圓.2、D【解析】

由題意得,當且僅當時,等號成立,所以至少有一個不小于,故選D.3、D【解析】由函數(shù)的圖象的相鄰兩條對稱軸之間的距離為,得函數(shù)的最小正周期為,則,所以函數(shù),的圖象向右平移個單位長度,得到的圖象,以為的圖象都經(jīng)過點,所以,又,所以,所以,所以或,所以或,因為,所以結(jié)合選項可知得一個可能的值為,故選D.4、D【解析】

由題意找到反例即可確定錯誤的選項.【詳解】如圖所示,在正方體中,取直線m為,平面為,滿足,取平面為平面,則的交線為,很明顯m和n為異面直線,不滿足,選項D錯誤;如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以A正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以B正確;由A選項和面面垂直的判定定理可得C也正確.本題答案為D.【點睛】本題主要考查線面關系有關命題真假的判斷,意在考查學生的轉(zhuǎn)化能力和邏輯推理能力,屬基礎題.5、D【解析】

由已知利用同角三角函數(shù)基本關系式可求,根據(jù)余弦定理,基本不等式可求的最大值,進而利用三角形面積公式即可求解.【詳解】解:,可解得:,由余弦定理,可得,即,當且僅當時成立.等號當時成立.故選D.【點睛】本題主要考查了余弦定理,三角形面積公式的應用,屬于基本知識的考查.6、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20min,在乙地休息10min后,他又以勻速從乙地返回到甲地用了30min,那么可知先是勻速運動,圖像為直線,然后再休息,路程不變,那么可知時間持續(xù)10min,那么最后還是同樣的勻速運動,直線的斜率不變可知選D.考點:函數(shù)圖像點評:主要是考查了路程與時間的函數(shù)圖像的運用,屬于基礎題.7、A【解析】試題分析:由題意可得,滿足運用基本不等式的條件——一正,二定,三相等,所以,故選A考點:利用基本不等式求最值;8、D【解析】

可得.【詳解】向量,則.故選:.【點睛】本題主要考查了向量模的運算和向量的數(shù)量積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9、B【解析】

由題意,可先求得三個人都沒有被錄取的概率,接下來求至少有一人被錄取的概率,利用對立事件的概率公式,求得結(jié)果.【詳解】甲、乙、丙三人都沒有被錄取的概率為,所以三人中至少有一人被錄取的概率為,故選B.【點睛】該題考查的是有關概率的求解問題,關鍵是掌握對立事件的概率加法公式,求得結(jié)果.10、D【解析】

首先利用同角三角函數(shù)的關系式求出sinC的值,進一步利用余弦定理和三角形的面積公式及基本不等式的應用求出結(jié)果.【詳解】△ABC中角ABC的對邊分別為a、b、c,cosC,利用同角三角函數(shù)的關系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理余弦定理和三角形面積的應用,基本不等式的應用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、42.【解析】

由已知結(jié)合指數(shù)式的運算性質(zhì)求解,把化為對數(shù)式得到,代入,再由對數(shù)的運算性質(zhì)求解.【詳解】∵,∴,由,得,∴.故答案為:,.【點睛】本題考查指數(shù)式與對數(shù)式的互化,考查對數(shù)的運算性質(zhì),屬于基礎題.12、12【解析】

直接根據(jù)圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積的關系計算得解.【詳解】因為圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積相等,所以此圓柱的側(cè)面積為.故答案為:12【點睛】本題主要考查圓柱的側(cè)面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、【解析】

由過點,求得a,代入,令,即可得到本題答案【詳解】因為的圖象過點,所以,所以,故.故答案為:-5【點睛】本題主要考查函數(shù)的解析式及利用解析式求值.14、【解析】

代入分式利用同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式,屬于基礎題.15、【解析】

在中,在中,分別由正弦定理求出,,在中,由余弦定理可得解.【詳解】由圖可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案為:【點睛】此題考查利用正余弦定理求解三角形,根據(jù)已知邊角關系建立等式求解,此題求AB的長度可在多個三角形中計算,恰當?shù)剡x擇可以減少計算量.16、【解析】

由題意和任意角的三角函數(shù)的定義求出的值即可.【詳解】由題意得角的終邊經(jīng)過點,則,所以,故答案為.【點睛】本題考查任意角的三角函數(shù)的定義,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析。(2)【解析】

(1)首先根據(jù)已知得到,再根據(jù)線面平行的判定即可得到平面.(2)首先根據(jù)線面垂直的判定證明平面,即可找到為與平面所成角,在計算其正弦值即可.【詳解】(1)因為分別是,的中點,所以四邊形為平行四邊形,即.平面,所以平面.(2)因為,為中點,所以.平面.所以為與平面所成角.在中,,,所以,.在中,,,所以.【點睛】本題第一問考查線面平行的判定,本題第二問考查線面成角,屬于中檔題.18、(1)詳見解析(2)詳見解析【解析】

(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型.(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1);(2)見解析.【解析】

(1)求出,由公式,得的值,從而求出的值,從而得到關于的線性回歸方程;(2)將月份和月份的銷售量值代入回歸直線方程,求出預測值,并計算預測值與實際值之間的誤差,結(jié)合題意來判斷(1)中所得回歸直線方程是否理想?!驹斀狻浚?)計算得,,,則,;故關于的回歸直線方程為.(2)當時,,此時;當時,,此時.故所得的回歸直線方程是理想的.【點睛】本題考查回歸直線方程的應用,解題的關鍵就是弄清楚最小二乘法公式,并準確代入數(shù)據(jù)計算,著重考察計算能力,屬于中等題。20、(1);(2)奇函數(shù),證明見解析;(3)見解析【解析】

(1)解不等式即得函數(shù)的定義域;(2)利用奇偶性的定義判斷函數(shù)的奇偶性并證明;(3)對a分類討論,利用對數(shù)函數(shù)的單調(diào)性解不等式.【詳解】(1)由題得,所以,所以函數(shù)的定義

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論