浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題含解析_第1頁
浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題含解析_第2頁
浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題含解析_第3頁
浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題含解析_第4頁
浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省嘉興市桐鄉(xiāng)高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.2.如圖為A、B兩名運(yùn)動(dòng)員五次比賽成績(jī)的莖葉圖,則他們的平均成績(jī)和方差的關(guān)系是()A., B.,C., D.,3.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含4.的值為()A.1 B. C. D.5.用長(zhǎng)為4,寬為2的矩形做側(cè)面圍成一個(gè)圓柱,此圓柱軸截面面積為()A.8 B. C. D.6.設(shè),,,則()A. B. C. D.7.已知是兩條不重合的直線,為兩個(gè)不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則8.已知變量x與y負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)=1.5,=5,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.9.經(jīng)過平面外一點(diǎn)和平面內(nèi)一點(diǎn)與平面垂直的平面有()A.1個(gè) B.2個(gè) C.無數(shù)個(gè) D.1個(gè)或無數(shù)個(gè)10.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點(diǎn),則異面直線AB與CE所成角的正弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),為的反函數(shù),則_______(用反三角形式表示).12.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.13.一船自西向東勻速航行,上午10時(shí)到達(dá)一座燈塔的南偏西距塔64海里的處,下午2時(shí)到達(dá)這座燈塔的東南方向的處,則這只船的航行速度為__________海里/小時(shí).14.對(duì)于任意x>0,不等式3x2-2mx+12>015.中,內(nèi)角、、所對(duì)的邊分別是、、,已知,且,,則的面積為_____.16.在上,滿足的的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.為了加強(qiáng)“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學(xué)校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長(zhǎng)方體形狀的校園警務(wù)室.由于此警務(wù)室的后背靠墻,無需建造費(fèi)用,甲工程隊(duì)給出的報(bào)價(jià)為:屋子前面新建墻體的報(bào)價(jià)為每平方米400元,左右兩面新建墻體報(bào)價(jià)為每平方米300元,屋頂和地面以及其他報(bào)價(jià)共計(jì)14400元.設(shè)屋子的左右兩面墻的長(zhǎng)度均為x米(3≤x≤6).(Ⅰ)當(dāng)左右兩面墻的長(zhǎng)度為多少時(shí),甲工程隊(duì)報(bào)價(jià)最低?并求出最低報(bào)價(jià).(Ⅱ)現(xiàn)有乙工程隊(duì)也要參與此警務(wù)室的建造競(jìng)標(biāo),其給出的整體報(bào)價(jià)為1800a(1+x)x元(a>0),若無論左右兩面墻的長(zhǎng)度為多少米,乙工程隊(duì)都能競(jìng)標(biāo)成功,試求a18.解下列三角方程:(1);(2).19.若,其為銳角,求的值20.中,角所對(duì)的邊分別為,已知.(1)求角的大??;(2)若,求面積的最大值.21.已知向量,,其中為坐標(biāo)原點(diǎn).(1)若,求向量與的夾角;(2)若對(duì)任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點(diǎn)睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.2、D【解析】

根據(jù)題中數(shù)據(jù),直接計(jì)算出平均值與方差,即可得出結(jié)果.【詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【點(diǎn)睛】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎(chǔ)題型.3、B【解析】

首先把兩個(gè)圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,求出其圓心坐標(biāo)和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個(gè)圓的位置關(guān)系是相離.故選:B【點(diǎn)睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡(jiǎn)單題.4、A【解析】

利用誘導(dǎo)公式將轉(zhuǎn)化到,然后直接計(jì)算出結(jié)果即可.【詳解】因?yàn)?,所?故選:A.【點(diǎn)睛】本題考查正切誘導(dǎo)公式的簡(jiǎn)單運(yùn)用,難度較易.注意:.5、B【解析】

分別討論當(dāng)圓柱的高為4時(shí),當(dāng)圓柱的高為2時(shí),求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點(diǎn)睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.6、B【解析】

根據(jù)與特殊點(diǎn)的比較可得因?yàn)?,,從而得到,得出答案.【詳解】解:因?yàn)?,,所以.故選:B【點(diǎn)睛】本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的問題,要熟記一些特殊點(diǎn),如,,.7、D【解析】

采用逐一驗(yàn)證法,結(jié)合線面以及線線之間的位置關(guān)系,可得結(jié)果.【詳解】若,是異面直線,與也可平行,故A錯(cuò)若//,,也可以在內(nèi),故B錯(cuò)若也可以在內(nèi),故C錯(cuò)若//,則,故D對(duì)故選:D【點(diǎn)睛】本題主要考查線面以及線線之間的位置關(guān)系,屬基礎(chǔ)題.8、A【解析】

先由變量負(fù)相關(guān),可排除D;再由回歸直線過樣本中心,即可得出結(jié)果.【詳解】因?yàn)樽兞縳與y負(fù)相關(guān),所以排除D;又回歸直線過樣本中心,A選項(xiàng),過點(diǎn),所以A正確;B選項(xiàng),不過點(diǎn),所以B不正確;C選項(xiàng),不過點(diǎn),所以C不正確;故選A【點(diǎn)睛】本題主要考查線性回歸直線,熟記回歸直線的意義即可,屬于常考題型.9、D【解析】

討論平面外一點(diǎn)和平面內(nèi)一點(diǎn)連線,與平面垂直和不垂直兩種情況.【詳解】(1)設(shè)平面為平面,點(diǎn)為平面外一點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),此時(shí),直線垂直底面,過直線的平面有無數(shù)多個(gè)與底面垂直;(2)設(shè)平面為平面,點(diǎn)為平面外一點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),此時(shí),直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點(diǎn)和平面內(nèi)一點(diǎn)與平面垂直的平面有1個(gè)或無數(shù)個(gè),故選D.【點(diǎn)睛】借助長(zhǎng)方體研究空間中線、面位置關(guān)系問題,能使問題直觀化,降低問題的抽象性.10、B【解析】

由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點(diǎn)睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先將轉(zhuǎn)化為,,然后求出即可【詳解】因?yàn)樗运运运园雅c互換可得即所以故答案為:【點(diǎn)睛】本題考查的是反函數(shù)的求法,較簡(jiǎn)單12、.【解析】

先利用等比中項(xiàng)的性質(zhì)計(jì)算出的值,然后由可求出的值.【詳解】由等比中項(xiàng)的性質(zhì)可得,得,所以,,,故答案為.【點(diǎn)睛】本題考查等比數(shù)列公比的計(jì)算,充分利用等比中項(xiàng)和等比數(shù)列相關(guān)性質(zhì)的應(yīng)用,可簡(jiǎn)化計(jì)算,屬于中等題.13、【解析】由,行駛了4小時(shí),這只船的航行速度為海里/小時(shí).【點(diǎn)睛】本題為解直角三角形應(yīng)用題,利用直角三角形邊角關(guān)系表示出兩點(diǎn)間的距離,在用輔助角公式變形求值,最后利用速度公式求出結(jié)果.14、(-∞,6)【解析】

先參變分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,再通過求函數(shù)最值得結(jié)果.【詳解】因?yàn)?x2-2mx+12>0,所以m<3x2+【點(diǎn)睛】在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.15、【解析】

由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時(shí)要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.16、【解析】

由,結(jié)合三角函數(shù)線,即可求解,得到答案.【詳解】如圖所示,因?yàn)?,所以滿足的的取值范圍為.【點(diǎn)睛】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)4米時(shí),28800元;(Ⅱ)0<a<12.25.【解析】

(Ⅰ)設(shè)甲工程隊(duì)的總造價(jià)為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設(shè)甲工程隊(duì)的總造價(jià)為y元,則y=3(300×2x+400×1800(x+16當(dāng)且僅當(dāng)x=16x,即即當(dāng)左右兩側(cè)墻的長(zhǎng)度為4米時(shí),甲工程隊(duì)的報(bào)價(jià)最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.18、(1);(2)或.【解析】

(1)先將等式變形為,并利用兩角和的余弦公式得出,即可得出,即可得出該方程的解;(2)由,將該方程變形為,求出的值,即可求出該方程的解.【詳解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解為或.【點(diǎn)睛】本題考查三角方程的求解,對(duì)等式進(jìn)行化簡(jiǎn)變形是計(jì)算的關(guān)鍵,考查運(yùn)算求解能力,屬于中等題.19、【解析】

利用同角公式求出兩個(gè)角的余弦值,再根據(jù)兩角和的余弦公式可得答案.【詳解】因?yàn)闉殇J角,且,所以,,所以.【點(diǎn)睛】本題考查了同角公式,考查了兩角和的余弦公式,屬于基礎(chǔ)題.20、(1);(2).【解析】

(1)由正弦定理化邊為角,再由同角間的三角函數(shù)關(guān)系化簡(jiǎn)可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面積最大值.【詳解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,,最大值為.【點(diǎn)睛】本題考查正弦定理和余弦定理,考查同角間的三角函數(shù)關(guān)系,考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論