浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州市杭州市第四中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)的圖象過點(diǎn),且在上單調(diào),同時(shí)的圖象向左平移個(gè)單位之后與原來的圖象重合,當(dāng),且時(shí),,則A. B. C. D.2.已知函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-3,則A.14B.-114C.3.將函數(shù)的圖像上的所有點(diǎn)向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,若的部分圖像如圖所示,則函數(shù)的解析式為A. B.C. D.4.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}5.函數(shù)y=sin2x的圖象可能是A. B.C. D.6.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱7.已知,,且,則實(shí)數(shù)等于()A.-1 B.-9 C.3 D.98.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.499.式子的值為()A. B.0 C.1 D.10.已知函數(shù),正實(shí)數(shù)是公差為正數(shù)的等差數(shù)列,且滿足,若實(shí)數(shù)是方程的一個(gè)解,那么下列四個(gè)判斷:①;②;③;④中一定不成立的是()A.① B.②③ C.①④ D.④二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,則______.12.已知數(shù)列,,且,則________.13.已知變量,滿足,則的最小值為________.14.在△ABC中,,則________.15.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______.16.若,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心在軸上,且與過原點(diǎn)傾斜角為的直線相切.(1)求圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).18.的內(nèi)角,,的對(duì)邊分別為,,,為邊上一點(diǎn),為的角平分線,,.(1)求的值:(2)求面積的最大值.19.已知數(shù)列的前項(xiàng)和為,且.(1)求;(2)若,求數(shù)列的前項(xiàng)和.20.設(shè)是等差數(shù)列,且.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求.21.已知定義域?yàn)榈暮瘮?shù)是奇函數(shù).(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)判斷函數(shù)的單調(diào)性,并用定義加以證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由題設(shè)可知該函數(shù)的周期是,則過點(diǎn)且可得,故,由可得,所以由可得,注意到,故,所以,應(yīng)選答案A點(diǎn)睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求.2、D【解析】試題分析:函數(shù)f(x)是定義在上的奇函數(shù),,故答案為D.考點(diǎn):奇函數(shù)的應(yīng)用.3、C【解析】

根據(jù)圖象求出A,ω和φ的值,得到g(x)的解析式,然后將g(x)圖象上的所有點(diǎn)向左平移個(gè)單位長(zhǎng)度得到f(x)的圖象.【詳解】由圖象知A=1,(),即函數(shù)的周期T=π,則π,得ω=2,即g(x)=sin(2x+φ),由五點(diǎn)對(duì)應(yīng)法得2φ=2kπ+π,k,得φ,則g(x)=sin(2x),將g(x)圖象上的所有點(diǎn)向左平移個(gè)單位長(zhǎng)度得到f(x)的圖象,即f(x)=sin[2(x)]=sin(2x)=,故選C.【點(diǎn)睛】本題主要考查三角函數(shù)解析式的求解,結(jié)合圖象求出A,ω和φ的值以及利用三角函數(shù)的圖象變換關(guān)系是解決本題的關(guān)鍵.4、A【解析】

根據(jù)誘導(dǎo)公式化簡(jiǎn)解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點(diǎn)睛】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)椋詾槠婧瘮?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).6、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.7、C【解析】

由可知,再利用坐標(biāo)公式求解.【詳解】因?yàn)?,且,所以,即,解得,故選:C.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,解題關(guān)鍵是明確.8、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因?yàn)閳A心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點(diǎn)時(shí),取得最大值,B點(diǎn)的坐標(biāo)為,即時(shí)是最大值.考點(diǎn):線性規(guī)劃綜合問題.9、D【解析】

利用兩角和的正弦公式可得原式為cos(),再由特殊角的三角函數(shù)值可得結(jié)果.【詳解】cos()=coscos,故選D.【點(diǎn)睛】本題考查兩角和的余弦公式,熟練掌握兩角和與差的余弦公式以及特殊角的三角函數(shù)值是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】

先判斷出函數(shù)的單調(diào)性,分兩種情況討論:①;②.結(jié)合零點(diǎn)存在定理進(jìn)行判斷.【詳解】在上單調(diào)減,值域?yàn)?,又.?)若,由知,③成立;(2)若,此時(shí),①②③成立.綜上,一定不成立的是④,故選D.【點(diǎn)睛】本題考查零點(diǎn)存在定理的應(yīng)用,考查自變量大小的比較,解題時(shí)要充分考查函數(shù)的單調(diào)性,對(duì)函數(shù)值符號(hào)不確定的,要進(jìn)行分類討論,結(jié)合零點(diǎn)存在定理來進(jìn)行判斷,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點(diǎn)睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識(shí)的考查.12、【解析】

由題意可得{}是以+1為首項(xiàng),以2為公比的等比數(shù)列,再由已知求得首項(xiàng),進(jìn)一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項(xiàng),以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項(xiàng)公式,屬于中檔題.13、0【解析】

畫出可行域,分析目標(biāo)函數(shù)得,當(dāng)在y軸上截距最小時(shí),即可求出的最小值.【詳解】作出可行域如圖:聯(lián)立得化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點(diǎn)時(shí),在y軸上的截距最小,有最小值為,故填.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,屬于中檔題.14、【解析】

因?yàn)樗宰⒁獾剑汗剩蚀鸢笧椋?5、10【解析】

將和用首項(xiàng)和公差表示,解方程組,求出首項(xiàng)和公式,利用公式求解.【詳解】設(shè)該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點(diǎn)睛】本題考查由基本量計(jì)算等差數(shù)列的通項(xiàng)公式以及前項(xiàng)和,屬基礎(chǔ)題.16、【解析】

,則,故答案為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)經(jīng)過、、、四點(diǎn)的圓所過定點(diǎn)的坐標(biāo)為、【解析】

(1)先算出直線方程,根據(jù)相切和過點(diǎn),圓心在軸上聯(lián)立方程解得答案.(2)取線段的中點(diǎn),經(jīng)過、、、四點(diǎn)的圓是以線段為直徑的圓,設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,將圓方程表示出來,聯(lián)立方程組解得答案.【詳解】(1)由題意知,直線的方程為,整理為一般方程可得由圓的圓心在軸上,可設(shè)圓的方程為,由題意有,解得:,,故圓的標(biāo)準(zhǔn)方程為.(2)由圓的幾何性質(zhì)知,,,取線段的中點(diǎn),由直角三角形的性質(zhì)可知,故經(jīng)過、、、四點(diǎn)的圓是以線段為直徑的圓,設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為有則以為直徑的圓的方程為:,整理為可得.令,解得或,故經(jīng)過、、、四點(diǎn)的圓所過定點(diǎn)的坐標(biāo)為、.【點(diǎn)睛】本題考查了圓的方程,切線問題,四點(diǎn)共圓,定點(diǎn)問題,綜合性強(qiáng),技巧性高,意在考查學(xué)生的綜合應(yīng)用能力.18、(1)(2)3【解析】

(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關(guān)系得,再根據(jù)三角形的面積公式,可化簡(jiǎn)得,然后根據(jù)基本不等式即可求出面積的最大值.【詳解】(1)如圖所示:因?yàn)椋裕忠驗(yàn)闉榈慕瞧椒志€,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因?yàn)樗?,所以又因?yàn)榍?,故所以,?dāng)且僅當(dāng)即時(shí)取等號(hào).所以面積的最大值為.【點(diǎn)睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,以及利用基本不等式求最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.19、(1);(2).【解析】

(1)利用與的關(guān)系可得,再利用等差數(shù)列的通項(xiàng)公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】解:(1)因?yàn)?,①所以?dāng)時(shí),,又,故.當(dāng)時(shí),,②①②得,,整理得.因?yàn)?,所以,所以是以為首?xiàng),以1為公差的等差數(shù)列.所以,即.(2)由(1)及得,,所以.【點(diǎn)睛】本小題考查與的關(guān)系、等差數(shù)列的定義及通項(xiàng)公式、數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、分類與整合思想等.20、(I);(II).【解析】

(I)設(shè)公差為,根據(jù)題意可列關(guān)于的方程組,求解,代入通項(xiàng)公式可得;(II)由(I)可得,進(jìn)而可利用等比數(shù)列求和公式進(jìn)行求解.【詳解】(I)設(shè)等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項(xiàng),2為公比的等比數(shù)列.∴.∴點(diǎn)睛:等差數(shù)列的通項(xiàng)公式及前項(xiàng)和共涉及五個(gè)基本量,知道其中三個(gè)可求另外兩個(gè),體現(xiàn)了用方程組解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論