北師大版初三(下)數(shù)學(xué)第83講:二次函數(shù)的圖象(學(xué)生版)_第1頁
北師大版初三(下)數(shù)學(xué)第83講:二次函數(shù)的圖象(學(xué)生版)_第2頁
北師大版初三(下)數(shù)學(xué)第83講:二次函數(shù)的圖象(學(xué)生版)_第3頁
北師大版初三(下)數(shù)學(xué)第83講:二次函數(shù)的圖象(學(xué)生版)_第4頁
北師大版初三(下)數(shù)學(xué)第83講:二次函數(shù)的圖象(學(xué)生版)_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

二次函數(shù)的圖象____________________________________________________________________________________________________________________________________________________________________1、能利用描點法作出二次函數(shù)的圖象,并根據(jù)圖象認(rèn)識和理解二次函數(shù)的性質(zhì),建立二次函數(shù)表達式與圖象之間的聯(lián)系;2、經(jīng)歷探索二次函數(shù)圖象的過程,進一步培養(yǎng)數(shù)形結(jié)合的數(shù)學(xué)思想與學(xué)習(xí)方法;3、通過探討作圖激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí),培養(yǎng)學(xué)生團結(jié)協(xié)作的思想品質(zhì).1.二次函數(shù)的圖象(1)二次函數(shù)y=ax2(a≠0)的圖象的畫法:①_______:先取原點(0,0),然后以原點為中心對稱地選取x值,求出函數(shù)值,列表.②_______:在平面直角坐標(biāo)系中描出表中的各點.③_______:用平滑的曲線按順序連接各點.④在畫拋物線時,取的點越密集,描出的圖象就越精確,但取點多計算量就大,故一般在頂點的兩側(cè)各取三四個點即可.連線成圖象時,要按自變量從小到大(或從大到?。┑捻樞蛴闷交那€連接起來.畫拋物線y=ax2(a≠0)的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).(2)二次函數(shù)y=ax2+bx+c(a≠0)的圖象二次函數(shù)y=ax2+bx+c(a≠0)的圖象看作由二次函數(shù)y=ax2的圖象向右或向左平移||個單位,再向上或向下平移||個單位得到的.2.二次函數(shù)圖象與系數(shù)的關(guān)系二次函數(shù)y=ax2+bx+c(a≠0)①二次項系數(shù)a決定拋物線的______和_______.當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;|a|還可以決定開口大小,|a|越大,開口就越___.②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③.常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c).④拋物線與x軸交點個數(shù).△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.3.二次函數(shù)圖象與幾何變換由于拋物線平移后的形狀____,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.1.動點的二次函數(shù)圖象.【例1】(2014?北京望京陳經(jīng)綸中學(xué)期末)如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是()練1.如圖,等腰直角三角形ABC(∠C=90°)的直角邊長與正方形MNPQ的邊長均為4cm,CA與MN在同一直線上,開始時A點與M點重合,讓△ABC向右平移,直到C點與N點重合時為止,設(shè)△ABC與正方形MNPQ的重疊部分(圖中陰影部分)的面積為ycm2,MA的長度為xcm,則y與x之間的函數(shù)關(guān)系大致為()A. B. C. D.2.二次函數(shù)圖象的象限分布.【例2】(2015?山東淄博三中月考)已知y=ax2+bx+c的圖象如圖所示,則y=ax+b的圖象一定過()A.第一,二,三象限 B.第一,二,四象限C.第二,三,四象限 D.第一,三,四象限練2.二次函數(shù)y=ax2+bx+c的圖象如圖所示,則直線y=bx+c的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限練3.在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是()A. B. C.D.3.二次函數(shù)的圖象.【例3】(2014?四川綿陽一中期中)在同一坐標(biāo)系中,作出函數(shù)y=kx2和y=kx﹣2(k≠0)的圖象,只可能是()A. B. C. D.練4.二次函數(shù)y=2(x+2)2﹣1的圖象是()A. B. C.D.4.二次函數(shù)圖象與系數(shù)的關(guān)系.【例4】(2014?上海閘北區(qū)24校聯(lián)考)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論正確的是()A.a(chǎn)>0 B.c<0 C.b2﹣4ac<0D.a(chǎn)+b+c>0練5.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是()A.②④ B.①④ C.②③ D.①③5.二次函數(shù)自變量的取值范圍;【例5】(2014秋?天津薊縣中學(xué)期末)函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是()A.B.C.D.練7.拋物線y=ax2+bx+c與直線y=ax+b的大致圖象只可能是()A.B.C.D.1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a>0;②c>0;③b2﹣4ac>0,其中正確的個數(shù)是()A.0個 B.1個 C.2個 D.3個2.二次函數(shù)y=ax2+bx+c的圖象如圖,則點M(b,)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則a、b、c滿足()A.a(chǎn)<0,b<0,c>0 B.a(chǎn)<0,b<0,c<0 C.a(chǎn)<0,b>0,c>0 D.a(chǎn)>0,b<0,c>04.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是.5.已知拋物線y=ax2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是.6.如圖,⊙O的半徑為2,C1是函數(shù)y=x2的圖象,C2是函數(shù)y=﹣x2的圖象,則陰影部分的面積是.__________________________________________________________________________________________________________________________________________________________________1.若二次函數(shù)y=ax2+bx+c的頂點在第一象限,且經(jīng)過點(0,1),(﹣1,0),則S=a+b+c的變化范圍是()A.0<s<2 B.S>1 C.1<S<2 D.﹣1<S<12.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列6個代數(shù)式:ab,ac,a+b+c,a﹣b+c,2a+b,2a﹣b中,其值為正的式子的個數(shù)是()A.2個 B.3個 C.4個 D.5個3.二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下面四個結(jié)論中正確的結(jié)論有()①ac<0;②ab>0;③2a<b;④a+c>b;⑤4a+2b+c>0;⑥a+b+c>0.A.兩個 B.三個 C.四個 D.五個4.二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象可得a,b,c與0的大小關(guān)系是()A.a(chǎn)>0,b<0,c<0 B.a(chǎn)>0,b>0,c>0 C.a(chǎn)<0,b<0,c<0 D.a(chǎn)<0,b>0,c<05.已知b>0時,二次函數(shù)y=ax2+bx+a2﹣1的圖象如下列四個圖之一所示:根據(jù)圖象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.26.二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論錯誤的是()A.a(chǎn)>0 B.b>0 C.c<0 D.a(chǎn)bc>07.二次函數(shù)y=ax2+bx+c的圖象過原點,且與x軸的正半軸相交,則下列各式正確的()A.a(chǎn)>0,b<0,c<0 B.c=0,ab<0C.a(chǎn)≠0,b<0,c=0 D.a(chǎn)≠0,b≥0,c=08.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①a+b+c>0;②a﹣b+c>0;③abc<0;④2a+b=0.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個9.已知a<0,b>0,那么拋物線y=ax2+bx+2的頂點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么點()在平面直角坐標(biāo)系中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則a,b,c滿足()A.a(chǎn)<0,b<0,c>0,b2﹣4ac>0 B.a(chǎn)<0,b<0,c<0,b2﹣4ac>0C.a(chǎn)<0,b>0,c>0,b2﹣4ac<0 D.a(chǎn)>0,b<0,c>0,b2﹣4ac>012.初三數(shù)學(xué)課本上,用“描點法”畫二次函數(shù)y=ax2+bx+c的圖象時,列了如下表格:x…﹣2﹣1012…y…﹣4﹣2…根據(jù)表格上的信息回答問題:該二次函數(shù)y=ax2+bx+c在x=3時,y=.13.如圖是二次函數(shù)y=a(x+1)2+2圖象的一部分,該圖在y軸右側(cè)與x軸交點的坐標(biāo)是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論