江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第1頁
江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第2頁
江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第3頁
江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第4頁
江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省百校2024屆數(shù)學(xué)高一下期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,則的最大值為A. B. C. D.2.在中,分別為角的對邊),則的形狀是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形3.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.64.已知直線與圓相切,則的值是()A.1 B. C. D.5.某三棱錐的左視圖、俯視圖如圖所示,則該三棱錐的體積是()A.3 B.2 C. D.16.設(shè)是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等差數(shù)列.其中正確命題的個數(shù)是()A. B. C. D.7.如圖所示,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形的概率是()A. B. C. D.8.若平面向量a與b的夾角為60°,|b|=4,(aA.2B.4C.6D.129.已知數(shù)列的前項和為,且,若,,則的值為()A.15 B.16 C.17 D.1810.在一段時間內(nèi),某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關(guān)關(guān)系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.7二、填空題:本大題共6小題,每小題5分,共30分。11.當(dāng),時,執(zhí)行完如圖所示的一段程序后,______.12.秦九韶是我國南宋著名數(shù)學(xué)家,在他的著作《數(shù)書九章》中有己知三邊求三角形面積的方法:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上以小斜冪乘大斜冪減上,余四約之,為實一為從陽,開平方得積.”如果把以上這段文字寫成公式就是,其中是的內(nèi)角的對邊為.若,且,則面積的最大值為________.13.《九章算術(shù)》是體現(xiàn)我國古代數(shù)學(xué)成就的杰出著作,其中(方田)章給出的計算弧田面積的經(jīng)驗公式為:弧田面積(弦矢矢2),弧田(如圖陰影部分)由圓弧及其所對的弦圍成,公式中“弦”指圓弧所對弦的長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有弧長為米,半徑等于米的弧田,則弧所對的弦的長是_____米,按照上述經(jīng)驗公式計算得到的弧田面積是___________平方米.14.在正四面體中,棱與所成角大小為________.15.已知數(shù)列為等差數(shù)列,,,若,則________.16.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當(dāng)下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不做廣告宣傳且每件獲利a元的前提下,可賣出b件;若做廣告宣傳,廣告費為n千元比廣告費為千元時多賣出件。(1)試寫出銷售量與n的函數(shù)關(guān)系式;(2)當(dāng)時,廠家應(yīng)該生產(chǎn)多少件產(chǎn)品,做幾千元的廣告,才能獲利最大?18.已知,其中,求:(1);;(2)與的夾角的余弦值.19.中,D是邊BC上的點,滿足,,.(1)求;(2)若,求BD的長.20.已知,,當(dāng)為何值時:(1)與垂直;(2)與平行.21.已知的頂點,邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點的坐標(biāo);(2)求直線的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用正弦定理得出的外接圓直徑,并利用正弦定理化邊為角,利用三角形內(nèi)角和關(guān)系以及兩角差正弦公式、配角公式化簡,最后利用正弦函數(shù)性質(zhì)可得出答案.【詳解】中,,,則,,其中由于,所以,所以最大值為.故選A.【點睛】本題考查正弦定理以及兩角差正弦公式、配角公式,考查基本分析計算能力,屬于中等題.2、A【解析】

根據(jù)正弦定理得到,化簡得到,得到,得到答案.【詳解】,則,即,即,,故,.故選:.【點睛】本題考查了正弦定理判斷三角形形狀,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.3、C【解析】

由題意作出不等式組所表示的平面區(qū)域,將化為,相當(dāng)于直線的縱截距,由幾何意義可得結(jié)果.【詳解】由題意作出其平面區(qū)域,令,化為,相當(dāng)于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.4、D【解析】

利用直線與圓相切的條件列方程求解.【詳解】因為直線與圓相切,所以,,,故選D.【點睛】本題考查直線與圓的位置關(guān)系,通常利用圓心到直線的距離與圓的半徑的大小關(guān)系進(jìn)行判斷,考查運算能力,屬于基本題.5、D【解析】

根據(jù)三視圖高平齊的原則得知錐體的高,結(jié)合俯視圖可計算出底面面積,再利用錐體體積公式可得出答案.【詳解】由三視圖“高平齊”的原則可知該三棱錐的高為,俯視圖的面積為錐體底面面積,則該三棱錐的底面面積為,因此,該三棱錐的體積為,故選D.【點睛】本題考查利用三視圖求幾何體的體積,解題時充分利用三視圖“長對正,高平齊,寬相等”的原則得出幾何體的某些數(shù)據(jù),并判斷出幾何體的形狀,結(jié)合相關(guān)公式進(jìn)行計算,考查空間想象能力,屬于中等題.6、C【解析】

設(shè),得到,,,再利用舉反例的方式排除③【詳解】設(shè),則:,故是首項為,公比為的等比數(shù)列,①正確,故是首項為,公比為的等比數(shù)列,②正確取,則,不是等比數(shù)列,③錯誤.,故是首項為,公差為的等差數(shù)列,④正確故選:C【點睛】本題考查了等差數(shù)列,等比數(shù)列的判斷,找出反例可以快速的排除選項,簡化運算,是解題的關(guān)鍵.7、A【解析】

根據(jù)題意,分析可得,由三角形面積公式計算可得△DEF和△ACF的面積,進(jìn)而可得△ABC的面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,為等邊三角形,則,則,中,,其面積,中,,,其面積,則的面積,故在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形的概率,故選:A.【點睛】本題主要考查幾何概型中的面積類型,基本方法是:分別求得構(gòu)成事件A的區(qū)域面積和試驗的全部結(jié)果所構(gòu)成的區(qū)域面積,兩者求比值,即為概率.8、C【解析】∵(a+2b)·(a-3b)=-72,∴9、B【解析】

推導(dǎo)出數(shù)列是等差數(shù)列,由解得,由此利用能求出的值.【詳解】數(shù)列的前項和為,且數(shù)列是等差數(shù)列解得解得故選:【點睛】本題考查等差數(shù)列的判定和基本量的求解,屬于基礎(chǔ)題.10、C【解析】

由題意利用線性回歸方程的性質(zhì)計算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點,故:,據(jù)此可得:.故選C.【點睛】本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

模擬程序運行,可得出結(jié)論.【詳解】時,滿足,所以.故答案為:1.【點睛】本題考查程序框圖,考查條件結(jié)構(gòu),解題時模擬程序運行即可.12、【解析】

根據(jù)正弦定理和余弦定理,由可得,再由及函數(shù)求最值的知識,即可求解.【詳解】,又,,時,面積的最大值為.故答案為:【點睛】本題主要考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了理解辨析能力與運算求解能力,屬于中檔題.13、【解析】

在中,由題意可知:,弧長為,即可以求出,則求得的值,根據(jù)題意可求矢和弦的值及弦長,利用公式可以完成.【詳解】如上圖在中,可得:,可以得:矢=所以:弧田面積(弦矢矢2)=所以填寫(1).(2).【點睛】本題是數(shù)學(xué)文化考題,扇形為載體的新型定義題,求弦長屬于簡單的解三角形問題,而作為第二空,我們首先知道公式中涉及到了“矢”,所以我們必須把“矢”的定義弄清楚,再借助定義求出它的值,最后只是簡單代入公式計算即能完成.14、【解析】

根據(jù)正四面體的結(jié)構(gòu)特征,取中點,連,,利用線面垂直的判定證得平面,進(jìn)而得到,即可得到答案.【詳解】如圖所示,取中點,連,,正四面體是四個全等正三角形圍成的空間封閉圖形,所有棱長都相等,所以,,且,所以平面,又由平面,所以,所以棱與所成角為.【點睛】本題主要考查了異面直線所成角的求解,以及直線與平面垂直的判定及應(yīng)用,著重考查了推理與論證能力,屬于基礎(chǔ)題.15、【解析】

設(shè)等差數(shù)列的公差為,根據(jù)已知條件列方程組解出和的值,可求出的表達(dá)式,再由可解出的值.【詳解】設(shè)等差數(shù)列的公差為,由,得,解得,,,因此,,故答案為:.【點睛】本題考查等差數(shù)列的求和,對于等差數(shù)列的問題,通常建立關(guān)于首項和公差的方程組求解,考查方程思想,屬于中等題.16、.【解析】

設(shè)時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設(shè)時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)根據(jù)若做廣告宣傳,廣告費為n千元比廣告費為千元時多賣出件,可得,利用疊加法可求得.(2)根據(jù)題意在時,利潤,可利用求最值.試題解析:(1)設(shè)表示廣告費為0元時的銷售量,由題意知,由疊加法可得即為所求。(2)設(shè)當(dāng)時,獲利為元,由題意知,,欲使最大,則,易知,此時.考點:疊加法求通項,求最值.18、(1)10;(2)【解析】試題分析:(1)本題考察的是平面向量的數(shù)量積和向量的模.先根據(jù)是相互垂直的單位向量表示出要用的兩個向量,然后根據(jù)向量的數(shù)量積運算和向量模的運算即可求出答案.(2)本題考察的是平面向量的夾角余弦值,可以通過向量的數(shù)量積公式表示出夾角的余弦值.先求出向量的模長,然后根據(jù)(1)求出的的數(shù)量積代入公式,即可求出答案.試題解析:(1),.∴|.(2)考點:平面向量數(shù)量積的坐標(biāo)表示、模和夾角.19、(1)(2)【解析】

(1)由中,D是邊BC上的點,根據(jù)面積關(guān)系求得,再結(jié)合正弦定理,即可求解.(2)由,化簡得到,再結(jié)合,解得,進(jìn)而利用勾股定理求得的長.【詳解】(1)由題意,在中,D是邊BC上的點,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【點睛】本題主要考查了三角形的正弦定理和三角形的面積公式的應(yīng)用,其中解答中熟記解三角形的正弦定理,以及熟練應(yīng)用三角的面積關(guān)系,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1);(2)【解析】

根據(jù)向量坐標(biāo)運算計算得到與的坐標(biāo)(1)由垂直關(guān)系得到數(shù)量積為,可構(gòu)造方程求得;(2)由向量平行的坐標(biāo)表示可構(gòu)造方程求得.【詳解】,(1)由與垂直得:,解得:(2)由與平行得:,解得:【點睛】本題考查平面向量平行和垂直的坐標(biāo)表示;關(guān)鍵是能夠明確兩向量垂直可得;兩向量平行可得.21、(1);(2)【解析】

(1)根據(jù)邊上的高所在直線方程求出的斜率,由點斜式可得的方程,與所在直線方程聯(lián)立即可得結(jié)果;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論