版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
蘇州新區(qū)一中2024屆高一下數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,在區(qū)間上為增函數(shù)的是().A. B. C. D.2.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”.則該人最后一天走的路程為().A.24里 B.12里 C.6里. D.3里3.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點,則異面直線AB與CE所成角的正弦值為()A. B. C. D.4.如圖所示的陰影部分是由軸及曲線圍成,在矩形區(qū)域內(nèi)隨機取一點,則該點取自陰影部分的概率是()A. B. C. D.5.我國古代數(shù)學家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細,所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細割圓,并使正多邊形的面積無限接近圓的面積,進而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成()A. B. C. D.6.在數(shù)列中,,則數(shù)列的前n項和的最大值是()A.136 B.140 C.144 D.1487.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞8.直線2x+y+4=0與圓x+22+y+32=5A.255 B.4559.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項和用表示,若滿足,則當取得最大值時,的值為()A.16 B.15 C.14 D.1310.某同學5天上學途中所花的時間(單位:分鐘)分別為12,8,10,9,11,則這組數(shù)據(jù)的方差為()A.4 B.2 C.9 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期___________.12.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.13.在平面直角坐標系中,從五個點:中任取三個,這三點能構(gòu)成三角形的概率是_______.14.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.15.下列命題中:①若,則的最大值為;②當時,;③的最小值為;④當且僅當均為正數(shù)時,恒成立.其中是真命題的是__________.(填上所有真命題的序號)16.設(shè)向量,,______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四邊形是邊長為2的正方形,為的中點,以為折痕把折起,使點到達點的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.18.設(shè)全集是實數(shù)集,集合,.(1)若,求實數(shù)的取值范圍;(2)若,求.19.如圖,是菱形,對角線與的交點為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.20.已知,,,.(1)求的最小值(2)證明:.21.如圖,在三棱錐中,,分別為棱,上的三等份點,,.(1)求證:平面;(2)若,平面,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)初等函數(shù)的圖象,可得函數(shù)在區(qū)間(0,1)上的單調(diào)性,從而可得結(jié)論.解:由題意,A的底數(shù)大于0小于1、C是圖象在一、三象限的單調(diào)減函數(shù)、D是余弦函數(shù),,在(0,+∞)上不單調(diào),B的底數(shù)大于1,在(0,+∞)上單調(diào)增,故在區(qū)間(0,1)上是增函數(shù),故選B考點:函數(shù)的單調(diào)性點評:本題考查函數(shù)的單調(diào)性,掌握初等函數(shù)的圖象與性質(zhì)是關(guān)鍵.2、C【解析】
由題意可知,每天走的路程里數(shù)構(gòu)成以為公比的等比數(shù)列,由求得首項,再由等比數(shù)列的通項公式求得該人最后一天走的路程.【詳解】解:記每天走的路程里數(shù)為,可知是公比的等比數(shù)列,由,得,解得:,,故選C.【點睛】本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的前項和,是基礎(chǔ)的計算題.3、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、A【解析】,所以,故選A。5、C【解析】
設(shè)圓的半徑為,由內(nèi)接正邊形的面積無限接近圓的面積可得:,由內(nèi)接正邊形的面積無限接近圓的面積可得:,問題得解.【詳解】設(shè)圓的半徑為,將內(nèi)接正邊形分成個小三角形,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:,此時,即:同理,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:此時所以故選C【點睛】本題主要考查了圓的面積公式及三角形面積公式的應(yīng)用,還考查了正弦的二倍角公式,考查計算能力,屬于中檔題.6、C【解析】
可得數(shù)列為等差數(shù)列且前8項為正數(shù),第9項為0,從第10項開始為負數(shù),可得前8或9項和最大,由求和公式計算可得.【詳解】解:∵在數(shù)列中,,
,即數(shù)列為公差為?4的等差數(shù)列,
,
令可得,
∴遞減的等差數(shù)列中前8項為正數(shù),第9項為0,從第10項開始為負數(shù),
∴數(shù)列的前8或9項和最大,
由求和公式可得
故選:C.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的判定,屬基礎(chǔ)題.7、D【解析】
從塔頂?shù)剿酌繉訜舯K數(shù)可構(gòu)成一個公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點睛】本題考查等比數(shù)列的應(yīng)用,解題關(guān)鍵是根據(jù)實際意義構(gòu)造一個等比數(shù)列,把問題轉(zhuǎn)化為等比數(shù)列的問題.8、C【解析】
先求出圓心到直線的距離d,然后根據(jù)圓的弦長公式l=2r【詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【點睛】求圓的弦長有兩種方法:一是求出直線和圓的交點坐標,然后利用兩點間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長構(gòu)成的直角三角形中運用勾股定理求解,此時不要忘了求出的是半弦長.在具體的求解中一般利用幾何法,以減少運算、增強解題的直觀性.9、A【解析】
設(shè)等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當時,;時,;再根據(jù),判斷出對取正負的影響,進而可得出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因為數(shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當時,;時,,因為,所以當時,,當時,,當時,,當時,因為,所以;因為所以,當時,取得最大值.故選:A【點睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì),及其函數(shù)特征即可,屬于常考題型.10、B【解析】
先求平均值,再結(jié)合方差公式求解即可.【詳解】解:由題意可得,由方差公式可得:,故選:B.【點睛】本題考查了樣本數(shù)據(jù)的方差,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用兩角和的正弦公式化簡函數(shù)表達式,由此求得函數(shù)的最小正周期.【詳解】依題意,故函數(shù)的周期.故填:.【點睛】本小題主要考查兩角和的正弦公式,考查三角函數(shù)最小正周期的求法,屬于基礎(chǔ)題.12、4【解析】
模擬程序運行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時,此時.故答案為:4.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.13、【解析】
分別算出兩點間的距離,共有種,構(gòu)成三角形的條件為任意兩邊之和大于第三邊,所以在這10種中找出滿足條件的即可.【詳解】由兩點之間的距離公式,得:,,,任取三點有:,共10種,能構(gòu)成三角形的有:,共6種,所求概率為:.【點睛】構(gòu)成三角形必須滿足任意兩邊之和大于第三邊,則n個點共有個線段,找出滿足條件的即可,屬于中等難度題目.14、【解析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點,所以,所以,所以與底面所成角的正弦值為.考點:直線與平面所成的角.15、①②【解析】
根據(jù)均值不等式依次判斷每個選項的正誤,得到答案.【詳解】①若,則的最大值為,正確②當時,,時等號成立,正確③的最小值為,取錯誤④當且僅當均為正數(shù)時,恒成立均為負數(shù)時也成立.故答案為①②【點睛】本題考查了均值不等式,掌握一正二定三相等的具體含義是解題的關(guān)鍵.16、【解析】
利用向量夾角的坐標公式即可計算.【詳解】.【點睛】本題主要考查了向量夾角公式的坐標運算,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理得到平面,進而可得平面平面;(2)先取中點,連結(jié),,證明平面平面,在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【詳解】(1)因為四邊形是正方形,所以折起后,且,因為,所以是正三角形,所以.又因為正方形中,為的中點,所以,所以,所以,所以,又因為,所以平面.又平面,所以平面平面.(2)取中點,連結(jié),,則,,又,則平面.又平面,所以平面平面.在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標系.在中,,,.∴,,故,,,∴,.設(shè)平面的一個法向量為,則由,得,令,得,,∴.因為平面的法向量為,則,又二面角為銳二面角,∴二面角的余弦值為.【點睛】本題主要考查面面垂直的判定,以及二面角的余弦值,熟記面面垂直的判定定理、以及二面角的向量求法即可,屬于??碱}型.18、(1)或(2)當時,;當時,【解析】
(1)若,則或,解得實數(shù)的取值范圍;(2)若則,結(jié)合交集定義,分類討論可得.【詳解】解:(1)若,則或,即或.所以的取值范圍為或.(2)∵,則且,∴.當時,;當時,.【點睛】本題考查集合的交集運算,元素與元素的關(guān)系,分類討論思想,屬于中檔題.19、(1)證明見解析;(2)證明見解析;(3)【解析】
(1)取的中點,連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即可證明平面平面;(3)作于,則為與平面所成角,在中,由余弦定理得即可.【詳解】(1)證明:取的中點,連接,,∵是菱形的對角線,的交點,∴,且,又∵,且,∴,且,從而為平行四邊形,∴,又平面,平面,∴平面;(2)∵四邊形為菱形,∴,∵,是的中點,∴,又,∴平面,又平面,∴平面平面;(3)作于,∵平面平面,∴平面,則為與平面所成角,由及四邊形為菱形,得為正三角形,則,,,∴為正三角形,從而,在中,由余弦定理,得,∴與平面所成角的余弦值為.【點睛】本題主要考查了空間線面位置關(guān)系、線面角的計算,屬于中檔題.20、(1)1(2)見解析【解析】
(1)根據(jù)基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根據(jù)基本不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶園股份合作協(xié)議書
- 2025年安徽淮南壽縣蜀山現(xiàn)代產(chǎn)業(yè)園投資有限公司招聘筆試參考題庫附帶答案詳解
- 中考數(shù)學一輪復習考點練習考向23 多邊形及其內(nèi)角和(含答案詳解)
- 2025年度鋼管租賃與環(huán)保處理服務(wù)合同
- 2025年度個人環(huán)保產(chǎn)品銷售代理合同
- 2025版天然氣供應(yīng)合同技術(shù)服務(wù)范本模板3篇
- 2025-2030全球汽車NVH測試解決方案行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國摻雜碘化銫閃爍晶體行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球工業(yè)數(shù)控木材激光切割機行業(yè)調(diào)研及趨勢分析報告
- 2025年度個人投資理財借款合同2篇
- 2025福建新華發(fā)行(集團)限責任公司校園招聘30人高頻重點提升(共500題)附帶答案詳解
- 山東鐵投集團招聘筆試沖刺題2025
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2025年天津市政集團公司招聘筆試參考題庫含答案解析
- 搞笑朗誦我愛上班臺詞
- 汽輪機熱平衡圖功率的核算方法
- 賓館旅客財物保管制度
- 鉆孔樁水下混凝土灌注記錄(自動生成)1
- nord stage 2用戶手冊簡體中文版
- 5A+Chapter+2+Turning+over+a+new+leaf 英語精講課件
- 商業(yè)計劃書(BP)行業(yè)與市場的撰寫秘籍
評論
0/150
提交評論