版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆青海省海南州高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn),,則與向量的方向相反的單位向量是()A. B. C. D.2.已知正三角形ABC邊長(zhǎng)為2,D是BC的中點(diǎn),點(diǎn)E滿足,則()A. B. C. D.-13.已知,,則在方向上的投影為()A. B. C. D.4.為了得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位5.在中,角的對(duì)邊分別為,若,則形狀是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形6.橢圓中以點(diǎn)M(1,2)為中點(diǎn)的弦所在直線斜率為()A. B. C. D.7.如圖為A、B兩名運(yùn)動(dòng)員五次比賽成績(jī)的莖葉圖,則他們的平均成績(jī)和方差的關(guān)系是()A., B.,C., D.,8.在中,角,,所對(duì)的邊為,,,且為銳角,若,,,則()A. B. C. D.9.直線的傾斜角是()A. B. C. D.10.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.12.如圖,在直四棱柱中,,,,分別為的中點(diǎn),平面平面.給出以下幾個(gè)說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號(hào)是__________.13.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個(gè)數(shù)列,若,則________________.14.圓與圓的公共弦長(zhǎng)為______________。15.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項(xiàng)的和為__.16.若圓:與圓:相交于,兩點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,則公共弦的長(zhǎng)度是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,,.(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和,求證:18.已知數(shù)列中,.(1)求證:是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(2)已知:數(shù)列,滿足①求數(shù)列的前項(xiàng)和;②記集合若集合中含有個(gè)元素,求實(shí)數(shù)的取值范圍.19.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點(diǎn)A為圓心,r=2為半徑作一個(gè)圓,設(shè)PQ為圓A的一條直徑.(1)請(qǐng)用表示,用表示;(2)記∠BAP=θ,求的最大值.20.解關(guān)于x的不等式21.已知的三個(gè)頂點(diǎn)為.(1)求過點(diǎn)且平行于的直線方程;(2)求過點(diǎn)且與、距離相等的直線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
根據(jù)單位向量的定義即可求解.【詳解】,向量的方向相反的單位向量為,故選A.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量的單位向量的概念,屬于中檔題.2、C【解析】
化簡(jiǎn),分別計(jì)算,,代入得到答案.【詳解】正三角形ABC邊長(zhǎng)為2,D是BC的中點(diǎn),點(diǎn)E滿足故答案選C【點(diǎn)睛】本題考查了向量的計(jì)算,將是解題的關(guān)鍵,也可以建立直角坐標(biāo)系解得答案.3、A【解析】在方向上的投影為,選A.4、D【解析】
由函數(shù),根據(jù)三角函數(shù)的圖象變換,即可求解,得到答案.【詳解】由題意,函數(shù),為了得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個(gè)單位,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及正弦的倍角公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、D【解析】
由,利用正弦定理化簡(jiǎn)可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀是等腰三角形或直角三角形故選D.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.6、A【解析】
先設(shè)出弦的兩端點(diǎn)的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設(shè)弦的兩端點(diǎn)為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點(diǎn)睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長(zhǎng)的中點(diǎn)問題,涉及到“中點(diǎn)與斜率”時(shí)常用“點(diǎn)差法”設(shè)而不求,將弦所在直線的斜率、弦的中點(diǎn)坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化,達(dá)到解決問題的目的,屬于中檔題.7、D【解析】
根據(jù)題中數(shù)據(jù),直接計(jì)算出平均值與方差,即可得出結(jié)果.【詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【點(diǎn)睛】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎(chǔ)題型.8、D【解析】
利用正弦定理化簡(jiǎn),再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負(fù)數(shù)舍去)故答案選D【點(diǎn)睛】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長(zhǎng)中的應(yīng)用,屬于中檔題.9、B【解析】
先求斜率,即傾斜角的正切值,易得.【詳解】,可知,即,故選B【點(diǎn)睛】一般直線方程求傾斜角將直線轉(zhuǎn)換為斜截式直線方程易得斜率,然后再根據(jù)直線的斜率等于傾斜角的正切值易得傾斜角,屬于簡(jiǎn)單題目.10、B【解析】設(shè)扇形的圓心角為α,則∵扇形的面積為,半徑為1,
∴故選B二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)圖象看出周期、特殊點(diǎn)的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點(diǎn)睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。12、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對(duì)于①,由,平面平面,則,又,所以,故①正確;對(duì)于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對(duì)于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對(duì)于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點(diǎn)睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.13、【解析】
由圖乙可得:第行有個(gè)數(shù),且第行最后的一個(gè)數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個(gè)數(shù),則前行共有個(gè)數(shù),②第行最后的一個(gè)數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個(gè)數(shù)為,這行中第個(gè)數(shù)為,前行共有個(gè)數(shù),則為第個(gè)數(shù).故填.【點(diǎn)睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個(gè)體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.14、【解析】
利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長(zhǎng)公式可得所求.【詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長(zhǎng)為,故答案為.【點(diǎn)睛】本題考查兩圓位置關(guān)系,直線與圓的位置關(guān)系,考查運(yùn)算能力,屬于基本題.15、【解析】試題分析:∵數(shù)列滿足,且,∴當(dāng)時(shí),.當(dāng)時(shí),上式也成立,∴.∴.∴數(shù)列的前項(xiàng)的和.∴數(shù)列的前項(xiàng)的和為.故答案為.考點(diǎn):(1)數(shù)列遞推式;(2)數(shù)列求和.16、【解析】
根據(jù)兩圓在點(diǎn)處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運(yùn)用點(diǎn)到直線的距離公式求出圓心到公共弦的距離,進(jìn)而求出公共弦長(zhǎng).【詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因?yàn)閮蓤A相交于點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,所以是直角三角形,,所以,由兩點(diǎn)間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長(zhǎng)故答案為:【點(diǎn)睛】本題主要考查兩圓公共弦的方程、圓弦長(zhǎng)的求法和點(diǎn)到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)見解析.【解析】
(1)根據(jù)遞推關(guān)系式可整理出,從而可證得結(jié)論;利用等比數(shù)列通項(xiàng)公式首先求解出,再整理出;(2)根據(jù)可求得,從而得到的通項(xiàng)公式,利用裂項(xiàng)相消法求得,從而使問題得證.【詳解】(1)由得:即,且數(shù)列是以為首項(xiàng),為公比的等比數(shù)列數(shù)列的通項(xiàng)公式為:(2)由(1)得:又即:【點(diǎn)睛】本題考查利用遞推關(guān)系式證明等比數(shù)列、求解等比數(shù)列通項(xiàng)公式、裂項(xiàng)相消法求解數(shù)列前項(xiàng)和的問題,屬于常規(guī)題型.18、(1)證明見解析,(2)①②【解析】
(1)計(jì)算得到:得證.(2)①計(jì)算的通項(xiàng)公式為,利用錯(cuò)位相減法得到.②將代入集合M,化簡(jiǎn)并分離參數(shù)得,確定數(shù)列的單調(diào)性,根據(jù)集合中含有個(gè)元素得到答案.【詳解】(1),為等比數(shù)列,其中首項(xiàng),公比為.所以,.(2)①數(shù)列的通項(xiàng)公式為①②①-②化簡(jiǎn)后得.②將代入得化簡(jiǎn)并分離參數(shù)得,設(shè),則易知由于中含有個(gè)元素,所以實(shí)數(shù)要小于等于第5大的數(shù),且比第6大的數(shù)大.,,綜上所述.【點(diǎn)睛】本題考查了數(shù)列的證明,數(shù)列的通項(xiàng)公式,錯(cuò)位相減法,數(shù)列的單調(diào)性,綜合性強(qiáng)計(jì)算量大,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1);(2)22.【解析】
利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標(biāo)表示的表達(dá)式,利用三角函數(shù)知識(shí)可求最值【詳解】(1)=-.(2)∵∠BAC=60°,設(shè)∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當(dāng)sin(θ+φ)=1時(shí),的最大值為22.【點(diǎn)睛】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應(yīng)用.20、見解析.【解析】試題分析:(1)討論的取值,分為,兩種情形,求出對(duì)應(yīng)不等式的解集即可.試題解析:當(dāng)a=0時(shí),原不等式化為x+10,解得;當(dāng)時(shí),原不等式化為,解得;綜上所述,當(dāng)a=0時(shí),不等式的解集為,當(dāng)時(shí),不等式的解集為.點(diǎn)睛:本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,元二次不等式的核心還是求一元二次方程的根,然后在結(jié)合圖象判定其區(qū)間解題時(shí)應(yīng)用分類討論的思想,是中檔題目;常見的討論形式有:1、對(duì)二項(xiàng)式系數(shù)進(jìn)行討論;2、相對(duì)應(yīng)的方程是否有根進(jìn)行討論;3、對(duì)應(yīng)根的大小進(jìn)行討論.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校教育中家長(zhǎng)的監(jiān)督與反饋機(jī)制研究
- 安慶新高考數(shù)學(xué)試卷
- 2024裝飾用材料采購協(xié)議詳例版B版
- 當(dāng)代大學(xué)生職業(yè)素養(yǎng)提升途徑研究
- 二零二五年度環(huán)保材料委托生產(chǎn)合同6篇
- 二零二五年度打印機(jī)設(shè)備銷售及售后技術(shù)支持協(xié)議2篇
- 2024年特許經(jīng)營分店合同3篇
- 小學(xué)科學(xué)實(shí)驗(yàn)教學(xué)與孩子綜合素質(zhì)的全面發(fā)展
- 2024陶瓷產(chǎn)業(yè)設(shè)計(jì)師勞動(dòng)合同及激勵(lì)方案3篇
- 2024年短期角色扮演聘用書
- 汽車安全與法規(guī) (第3版) 課件 第1-3章 汽車安全技術(shù)概述、汽車安全技術(shù)法規(guī)與標(biāo)準(zhǔn)、汽車主動(dòng)安全性
- 管理ABC-干嘉偉(美團(tuán)網(wǎng)COO)
- XX市“互聯(lián)網(wǎng)+”-土地二級(jí)市場(chǎng)交易建設(shè)方案
- 2023-2024學(xué)年度第一學(xué)期四年級(jí)數(shù)學(xué)寒假作業(yè)
- 大學(xué)軍事理論課教程第三章軍事思想第三節(jié)中國古代軍事思想
- 駕駛員勞務(wù)派遣投標(biāo)方案
- 續(xù)簽勞動(dòng)合同意見征詢書
- 水封式排水器的研究
- 導(dǎo)線三角高程計(jì)算表(表內(nèi)自帶計(jì)算公式)
- 小學(xué)數(shù)學(xué)課堂教學(xué)評(píng)價(jià)表
- 鋼管裝卸安全管理規(guī)定
評(píng)論
0/150
提交評(píng)論