版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南懷化市中小學課程改革教育質(zhì)量監(jiān)測高一下數(shù)學期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列不等式不成立的是()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸人的n值為2019,則S=A.-1 B.-12 C.13.在銳角三角形中,,,分別為內(nèi)角,,的對邊,已知,,,則的面積為()A. B. C. D.4.已知函數(shù)的值域為,且圖象在同一周期內(nèi)過兩點,則的值分別為()A. B.C. D.5.如圖,點為正方形的中心,為正三角形,平面平面是線段的中點,則()A.,且直線是相交直線B.,且直線是相交直線C.,且直線是異面直線D.,且直線是異面直線6.已知,,直線,若直線過線段的中點,則()A.-5 B.5 C.-4 D.47.下列命題正確的是()A.若,則 B.若,則C.若,,則 D.若,,則8.為了了解所加工的一批零件的長度,抽測了其中個零件的長度,在這個工作中,個零件的長度是()A.總體 B.個體 C.樣本容量 D.總體的一個樣本9.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.10.已知,,,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知M是AB邊所在直線上一點,滿足,則________.12.利用直線與圓的有關知識求函數(shù)的最小值為_______.13.已知點,點,則________.14.若數(shù)列的前項和,滿足,則______.15.不論k為何實數(shù),直線通過一個定點,這個定點的坐標是______.16.在數(shù)列中,,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,且(1)求·及;(2)若,求的最小值18.已知的內(nèi)角所對的邊分別為,且,.(1)若,求角的值;(2)若,求的值.19.已知圓心為的圓過點,且與直線相切于點。(1)求圓的方程;(2)已知點,且對于圓上任一點,線段上存在異于點的一點,使得(為常數(shù)),試判斷使的面積等于4的點有幾個,并說明理由。20.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.21.已知數(shù)列的前項和為,滿足,數(shù)列滿足.(1)求數(shù)列、的通項公式;(2),求數(shù)列的前項和;(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)不等式的基本性質(zhì)、重要不等式、函數(shù)的單調(diào)性即可得出結(jié)論.【詳解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指數(shù)函數(shù)在上單調(diào)遞增,且,∴,故D成立;故選:B.【點睛】本題主要考查不等式的基本性質(zhì),作差法比較大小,屬于基礎題.2、B【解析】
根據(jù)程序框圖可知,當k=2019時結(jié)束計算,此時S=cos【詳解】計算過程如下表所示:周期為6n2019k12…20182019S12-1…-k<n是是是是否故選B.【點睛】本題考查程序框圖,選用表格計算更加直觀,此題關鍵在于判斷何時循環(huán)結(jié)束.3、D【解析】由結(jié)合題意可得:,故,△ABC為銳角三角形,則,由題意結(jié)合三角函數(shù)的性質(zhì)有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項.點睛:在解決三角形問題中,求解角度值一般應用余弦定理,因為余弦定理在內(nèi)具有單調(diào)性,求解面積常用面積公式,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.4、C【解析】
根據(jù)值域先求,再代入數(shù)據(jù)得到最大值和最小值對應相差得到答案.【詳解】函數(shù)的值域為即,圖象在同一周期內(nèi)過兩點故答案選C【點睛】本題考查了三角函數(shù)的最大值最小值,周期,意在考查學生對于三角函數(shù)公式和性質(zhì)的靈活運用和計算能力.5、B【解析】
利用垂直關系,再結(jié)合勾股定理進而解決問題.【詳解】如圖所示,作于,連接,過作于.連,平面平面.平面,平面,平面,與均為直角三角形.設正方形邊長為2,易知,.,故選B.【點睛】本題考查空間想象能力和計算能力,解答本題的關鍵是構(gòu)造直角三角性.6、B【解析】
根據(jù)題意先求出線段的中點,然后代入直線方程求出的值.【詳解】因為,,所以線段的中點為,因為直線過線段的中點,所以,解得.故選【點睛】本題考查了直線過某一點求解參量的問題,較為簡單.7、C【解析】
對每一個選項進行判斷,選出正確的答案.【詳解】A.若,則,取不成立B.若,則,取不成立C.若,,則,正確D.若,,則,取不成立故答案選C【點睛】本題考查了不等式的性質(zhì),找出反例是解題的關鍵.8、D【解析】
根據(jù)總體與樣本中的相關概念進行判斷.【詳解】由題意可知,在這個工作中,個零件的長度是總體的一個樣本,故選D.【點睛】本題考查總體與樣本中相關概念的理解,屬于基礎題.9、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.10、C【解析】
設與的夾角為,計算出、、的值,再利用公式結(jié)合角的取值范圍可求出的值.【詳解】設與的夾角為,則,,,另一方面,,,,因此,,,因此,,故選C.【點睛】本題考查利用平面向量的數(shù)量積計算平面向量的夾角,解題的關鍵就是計算出、、的值,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【詳解】因為M在直線AB上,所以可設,
可得,即,又,則由與不共線,所以,解得.故答案為:3【點睛】本題考查向量的減法和向量共線的利用,屬于基礎題.12、【解析】
令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個圓上的點到直線的距離的最小值的5倍,即故答案為3【點睛】本題考查直線與圓的位置關系,點到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題13、【解析】
直接利用兩點間的距離公式求解即可.【詳解】點A(2,1),B(5,﹣1),則|AB|.故答案為:.【點睛】本題考查兩點間的距離公式的應用,基本知識的考查.14、【解析】
令,得出,令,由可計算出在時的表達式,然后就是否符合進行檢驗,由此可得出.【詳解】當時,;當時,則.也適合.綜上所述,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但需要對進行檢驗,考查計算能力,屬于基礎題.15、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點的直線系,解方程組,得上述直線恒過定點,故答案為.【方法點睛】本題主要考查待定直線過定點問題.屬于中檔題.探索曲線過定點的常見方法有兩種:①可設出曲線方程,然后利用條件建立等量關系進行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標準方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關.16、16【解析】
依次代入即可求得結(jié)果.【詳解】令,則;令,則;令,則;令,則本題正確結(jié)果:【點睛】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)運用向量數(shù)量積的坐標表示,求出·;運用平面向量的坐標運算公式求出,然后求出模.(2)根據(jù)上(1)求出函數(shù)的解析式,配方,利用二次函數(shù)的性質(zhì)求出最小值.【詳解】(1)∵∴∴(2)∵∴∴【點睛】本題考查了平面向量數(shù)量積的坐標表示,以及平面向量的坐標加法運算公式.重點是二次函數(shù)求最小值問題.18、(1)或;(2)、.【解析】
(1)由先求的值,再求角即可;(2)先由求出,再根據(jù)求出即可.【詳解】(1)由已知,又,所以,即,或;(2)因為,由可得,又因為,所以,即,總之、.【點睛】本題主要考查正弦定理、余弦定理及三角形面積公式的應用,屬常規(guī)考題.19、(1)(2)使的面積等于4的點有2個【解析】
(1)利用條件設圓的標準方程,由圓過點求t,確定圓方程.(2)設,由確定阿波羅尼斯圓方程,與圓C為同一圓,可得,求出N點的坐標,建立ON方程,,再利用面積求點P到直線的距離,判斷與ON平行且距離為的兩條直線與圓C的位置關系可得結(jié)論.【詳解】(1)依題意可設圓心坐標為,則半徑為,圓的方程可寫成,因為圓過點,∴,∴,則圓的方程為。(2)由題知,直線的方程為,設滿足題意,設,則,所以,則,因為上式對任意恒成立,所以,且,解得或(舍去,與重合)。所以點,則,直線方程為,點到直線的距離,若存在點使的面積等于4,則,∴。①當點在直線的上方時,點到直線的距離的取值范圍為,∵,∴當點在直線的上方時,使的面積等于4的點有2個;②當點在直線的下方時,點到直線的距離的取值范圍為,∵,∴當點在直線的下方時,使的面積等于4的點有0個,綜上可知,使的面積等于4的點有2個。【點睛】本題考查圓的方程,直線與圓的位置關系,圓的第二定義,考查運算能力,分析問題解決問題的能力,屬于難題.20、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】
(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項和Sn=3?3+5?32+7?33+…+(2n+1)?3n,3Sn=3?32+5?33+7?34+…+(2n+1)?3n+1,兩式相減可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)?3n+1=9+2?(2n+1)?3n+1,化簡可得Sn=n?3n+1.【點睛】本小題主要考查等差數(shù)列,等比數(shù)列通項公式,考查錯位相減求和法,考查運算求解能力,屬于中檔題.21、(1),;(2)見解析;(3)存在,.【解析】
(1)利用可得,從而可得為等比數(shù)列,故可得其通項公式.用累加法可求的通項.(2)利用分組求和法可求,注意就的奇偶性分類討論.(3)根據(jù)的通項可得,故考慮的解可得滿足條件的的值.【詳解】(1)在數(shù)列中,當時,.當時,由得,因為,故,所以數(shù)列是以為首項,為公比的等比數(shù)列即.在數(shù)列中,當時,有,由累加法得,,.當時,也符
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運營管理課程設計感想
- 背景模糊效果課程設計
- 工貿(mào)企業(yè)安全、環(huán)保、職業(yè)健康責任制模版(2篇)
- 二零二五年度工傷事故賠償與勞動者心理援助服務合同3篇
- 人工運土安全技術操作規(guī)程模版(3篇)
- 2025年演講稿《心態(tài)決定一切》模版(2篇)
- 模型分公司安全防火規(guī)定模版(3篇)
- 2025年人教A新版高二化學下冊階段測試試卷含答案
- 電纜溝安全生產(chǎn)制度模版(2篇)
- 2025年人教A版高一語文下冊階段測試試卷
- 拘留所教育課件02
- 護士事業(yè)單位工作人員年度考核登記表
- 兒童營養(yǎng)性疾病管理登記表格模板及專案表格模板
- 天津市新版就業(yè)、勞動合同登記名冊
- 數(shù)學分析知識點的總結(jié)
- 2023年重癥醫(yī)學科護理工作計劃
- 年會抽獎券可編輯模板
- 感染性疾病標志物及快速診斷課件(PPT 134頁)
- YC∕T 273-2014 卷煙包裝設計要求
- 2022年煤礦地面消防應急預案范文
- 高中化學必修二第三章第一節(jié)認識有機化合物課件
評論
0/150
提交評論