上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海市盧灣高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,一個邊長為的正方形里有一個月牙形的圖案,為了估算這個月牙形圖案的面積,向這個正方形里隨機(jī)投入了粒芝麻,經(jīng)過統(tǒng)計,落在月牙形圖案內(nèi)的芝麻有粒,則這個月牙圖案的面積約為()A. B. C. D.2.已知圓錐的母線長為6,母線與軸的夾角為30°,則此圓錐的體積為()A. B. C. D.3.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.某市舉行“精英杯”數(shù)學(xué)挑戰(zhàn)賽,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示,該校有130名學(xué)生獲得了復(fù)賽資格,則該校參加初賽的人數(shù)約為()A.200 B.400 C.2000 D.40005.兩條直線和,,在同一直角坐標(biāo)系中的圖象可能是()A. B.C. D.6.若且,則()A. B. C. D.7.直線與圓相交于M,N兩點,若.則的取值范圍是()A. B. C. D.8.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.9.已知一個三角形的三邊是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最小角的余弦值是()A. B.C. D.10.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前n項和,則________.12.?dāng)?shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________13.設(shè)實數(shù)滿足,則的最小值為_____14.若點到直線的距離是,則實數(shù)=______.15.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.16.若向量,,且,則實數(shù)______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列是以為首項,為公比的等比數(shù)列,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.19.四棱柱中,底面為正方形,,為中點,且.(1)證明;(2)求點到平面的距離.20.設(shè)常數(shù),函數(shù).(1)若為偶函數(shù),求的值;(2)若,求方程在區(qū)間上的解.21.設(shè)平面三點、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)幾何概型直接進(jìn)行計算即可.【詳解】月牙形圖案的面積約為:本題正確選項:【點睛】本題考查幾何概型的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】

根據(jù)母線長和母線與軸的夾角求得底面半徑和圓錐的高,代入體積公式求得結(jié)果.【詳解】由題意可知,底面半徑;圓錐的高圓錐體積本題正確選項:【點睛】本題考查錐體體積的求解問題,屬于基礎(chǔ)題.3、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題4、A【解析】

由頻率和為1,可算得成績大于90分對應(yīng)的頻率,然后由頻數(shù)÷總數(shù)=頻率,即可得到本題答案.【詳解】由圖,得成績大于90分對應(yīng)的頻率=,設(shè)該校參加初賽的人數(shù)為x,則,得,所以該校參加初賽的人數(shù)約為200.故選:A【點睛】本題主要考查頻率直方圖的相關(guān)計算,涉及到頻率和為1以及頻數(shù)÷總數(shù)=頻率的應(yīng)用.5、A【解析】

由方程得出直線的截距,逐個選項驗證即可.【詳解】由截距式方程可得直線的橫、縱截距分別為,直線的橫、縱截距分別為選項A,由的圖象可得,可得直線的截距均為正數(shù),故A正確;選項B,只有當(dāng)時,才有直線平行,故B錯誤;選項C,只有當(dāng)時,才有直線的縱截距相等,故C錯誤;選項D,由的圖象可得,可得直線的橫截距為正數(shù),縱截距為負(fù)數(shù),由圖像不對應(yīng),故D錯誤;故選:A【點睛】本題考查了直線的截距式方程,需理解截距的定義,屬于基礎(chǔ)題.6、A【解析】

利用同角的三角函數(shù)關(guān)系求得,再根據(jù)正弦的二倍角公式求解即可【詳解】由題,因為,,所以或,因為,所以,則,所以,故選:A【點睛】本題考查正弦的二倍角公式的應(yīng)用,考查同角的三角函數(shù)關(guān)系的應(yīng)用,考查已知三角函數(shù)值求三角函數(shù)值問題7、A【解析】

可通過將弦長轉(zhuǎn)化為弦心距問題,結(jié)合點到直線距離公式和勾股定理進(jìn)行求解【詳解】如圖所示,設(shè)弦中點為D,圓心C(3,2),弦心距,又,由勾股定理可得,答案選A【點睛】圓與直線的位置關(guān)系解題思路常從兩點入手:弦心距、勾股定理。處理過程中,直線需化成一般式8、C【解析】原式可化為,又,則C=,故選C.9、B【解析】

設(shè)的最大角為,最小角為,可得出,,由題意得出,由二倍角公式,利用正弦定理邊角互化思想以及余弦定理可得出關(guān)于的方程,求出的值,可得出的值.【詳解】設(shè)的最大角為,最小角為,可得出,,由題意得出,,所以,,即,即,將,代入得,解得,,,則,故選B.【點睛】本題考查利用正弦定理和余弦定理解三角形,解題時根據(jù)對稱思想設(shè)邊長可簡化計算,另外就是充分利用二倍角公式進(jìn)行轉(zhuǎn)化是解本題的關(guān)鍵,綜合性較強(qiáng).10、B【解析】

將棱錐補(bǔ)成長方體,根據(jù)長方體的外接球的求解方法法得到結(jié)果.【詳解】根據(jù)題意得到棱錐的三條側(cè)棱兩兩垂直,可以以三條側(cè)棱為長方體的楞,該三棱錐補(bǔ)成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點處。設(shè)球的半徑為R,則表面積為故答案為:B.【點睛】本題考查了球與幾何體的問題,是高考中的重點問題,要有一定的空間想象能力,這樣才能找準(zhǔn)關(guān)系,得到結(jié)果,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據(jù)半徑,頂點到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補(bǔ)體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補(bǔ)成長方體,它們是同一個外接球.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先利用求出,在利用裂項求和即可.【詳解】解:當(dāng)時,,當(dāng)時,,綜上,,,,故答案為:.【點睛】本題考查和的關(guān)系求通項公式,以及裂項求和,是基礎(chǔ)題.12、【解析】

因為數(shù)列有極限,故考慮的情況.又?jǐn)?shù)列分兩組,故分組求和求極限即可.【詳解】因為,故,且,故,又,即.綜上有.故答案為:【點睛】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關(guān)系,屬于中等題型.13、1.【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】解:由實數(shù)滿足作出可行域如圖,

由圖形可知:.

令,化為,

由圖可知,當(dāng)直線過點時,直線在軸上的截距最小,有最小值為1.

故答案為:1.【點睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.14、或1【解析】

由點到直線的距離公式進(jìn)行解答,即可求出實數(shù)a的值.【詳解】點(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點睛】本題考查了點到直線的距離公式的應(yīng)用問題,解題時應(yīng)熟記點到直線的距離公式,是基礎(chǔ)題.15、【解析】

先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.16、【解析】

根據(jù),兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點睛】本題主要考查兩個向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)按等比數(shù)列的概念直接求解即可;(2)先求出的表達(dá)式,再利用裂項相消法即可求得數(shù)列的前項和.【詳解】(1)由等比數(shù)列通項公式得:(2)由(1)可得:【點睛】本題主要考查數(shù)列的通項公式問題及利用裂項相消法求和的問題,屬常規(guī)考題.18、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當(dāng)t>0時,g(x)=-+t+1在上顯然是單調(diào)增函數(shù),∴即∴m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實數(shù)t的取值范圍是(0,1).19、(1)見解析;(2).【解析】試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)定理,即利用線面垂直進(jìn)行證明,而證明線面垂直,則利用線面垂直判定定理,即從已知的線線垂直出發(fā)給予證明,本題利用平幾知識,如等邊三角形性質(zhì)、正方形性質(zhì)得線線垂直,(2)求點到直線距離,一般方法利用等體積法轉(zhuǎn)化為求高.試題解析:(1)等邊中,為中點,又,且在正方形中,(2)中,,由(1)知,等體積法可得點到平面的距離為.20、(1);(2)或或.【解析】

(1)根據(jù)函數(shù)的奇偶性和三角形的函數(shù)的性質(zhì)即可求出,(2)先求出a的值,再根據(jù)三角形函數(shù)的性質(zhì)即可求出.【詳解】(1)∵,∴,∵為偶函數(shù),∴,∴,∴,∴;(2)∵,∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【點睛】本題考查了三角函數(shù)的化簡和求值,以及三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論